IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923012535.html
   My bibliography  Save this article

Hopf bifurcation analysis for a delayed nonlinear-SEIR epidemic model on networks

Author

Listed:
  • Barman, Madhab
  • Mishra, Nachiketa

Abstract

Using graph Laplacian diffusion, a delayed Susceptible–Exposed–Infected–Removed (SEIR) epidemic model with a non-linear incidence rate has been considered. This model incorporates a diffusion term that captures population mobility through a network. The local stability analysis for each steady state is demonstrated. Furthermore, we have explored the existence of Hopf bifurcation at the endemic equilibrium and addressed its direction using the Normal Form Theory and Center of Manifold Theorem. To visually illustrate our theoretical findings, we have performed computational experiments on a small-world Watts–Strogatz graph.

Suggested Citation

  • Barman, Madhab & Mishra, Nachiketa, 2024. "Hopf bifurcation analysis for a delayed nonlinear-SEIR epidemic model on networks," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012535
    DOI: 10.1016/j.chaos.2023.114351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Canrong & Ling, Zhi & Zhang, Lai, 2020. "Delay-driven spatial patterns in a network-organized semiarid vegetation model," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    2. Jin, Yu & Wang, Wendi & Xiao, Shiwu, 2007. "An SIRS model with a nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1482-1497.
    3. Cheng, Xinxin & Wang, Yi & Huang, Gang, 2021. "Global dynamics of a network-based SIQS epidemic model with nonmonotone incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    4. Tipsri, S. & Chinviriyasit, W., 2015. "The effect of time delay on the dynamics of an SEIR model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 153-172.
    5. Bao, Xiaomei & Tian, Canrong, 2019. "Delay driven vegetation patterns of a plankton system on a network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 74-88.
    6. Chang, Lili & Jin, Zhen, 2018. "Efficient numerical methods for spatially extended population and epidemic models with time delay," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 138-154.
    7. Lv, Wei & He, Hanfei & Li, Kezan, 2022. "Robust optimal control of a network-based SIVS epidemic model with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Yuan, Xinpeng & Xue, Yakui & Liu, Maoxing, 2013. "Analysis of an epidemic model with awareness programs by media on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 48(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahrouz, A. & El Mahjour, H. & Settati, A. & Bernoussi, A., 2018. "Dynamics and optimal control of a non-linear epidemic model with relapse and cure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 299-317.
    2. Fatima, Bibi & Zaman, Gul, 2020. "Co-infection of Middle Eastern respiratory syndrome coronavirus and pulmonary tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Chen, Mengxin & Zheng, Qianqian, 2023. "Steady state bifurcation of a population model with chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Qian, Qian & Feng, Hairong & Gu, Jing, 2021. "The influence of risk attitude on credit risk contagion—Perspective of information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    5. Liya Wang & Yaxun Dai & Renzhuo Wang & Yuwen Sun & Chunying Zhang & Zhiwei Yang & Yuqing Sun, 2022. "SEIARN: Intelligent Early Warning Model of Epidemic Spread Based on LSTM Trajectory Prediction," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    6. Tipsri, S. & Chinviriyasit, W., 2015. "The effect of time delay on the dynamics of an SEIR model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 153-172.
    7. Utsumi, Shinobu & Arefin, Md. Rajib & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "How and to what extent does the anti-social behavior of violating self-quarantine measures increase the spread of disease?," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    8. Yuan, Xinpeng & Xue, Yakui & Liu, Maoxing, 2014. "Global stability of an SIR model with two susceptible groups on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 42-50.
    9. Wang, Chenxu & Wang, Gaoshuai & Luo, Xiapu & Li, Hui, 2019. "Modeling rumor propagation and mitigation across multiple social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Mahajan, Shveta & Kumar, Deepak & Verma, Atul Kumar & Sharma, Natasha, 2023. "Dynamic analysis of modified SEIR epidemic model with time delay in geographical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    11. Buonomo, Bruno & Giacobbe, Andrea, 2023. "Oscillations in SIR behavioural epidemic models: The interplay between behaviour and overexposure to infection," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    12. Lanconelli, Alberto & Perçin, Berk Tan, 2022. "On a new method for the stochastic perturbation of the disease transmission coefficient in SIS models," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    13. Li, Xue-Zhi & Zhou, Lin-Lin, 2009. "Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 874-884.
    14. Zhou, Jiaying & Zhao, Yi & Ye, Yong, 2022. "Complex dynamics and control strategies of SEIR heterogeneous network model with saturated treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    15. Yuan, Xinpeng & Wang, Fang & Xue, Yakui & Liu, Maoxing, 2018. "Global stability of an SIR model with differential infectivity on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 443-456.
    16. Hu, Qing & Hu, Zhixing & Liao, Fucheng, 2016. "Stability and Hopf bifurcation in a HIV-1 infection model with delays and logistic growth," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 26-41.
    17. Li, Wenjie & Zhang, Ying & Cao, Jinde & Wang, Dongshu, 2023. "Large time behavior in a reaction diffusion epidemic model with logistic source," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    18. Fadwa El Kihal & Imane Abouelkheir & Mostafa Rachik & Ilias Elmouki, 2019. "Role of Media and Effects of Infodemics and Escapes in the Spatial Spread of Epidemics: A Stochastic Multi-Region Model with Optimal Control Approach," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
    19. Fu, Xinjie & Wang, JinRong, 2024. "Dynamic behaviors and non-instantaneous impulsive vaccination of an SAIQR model on complex networks," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    20. Wanduku, Divine, 2017. "Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 49-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.