IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925004151.html
   My bibliography  Save this article

Dynamical analysis of a fractional-order epidemic weighted network model and its finite-time control

Author

Listed:
  • Liu, Na
  • Wang, Jia
  • Sun, Junwei
  • Zhang, Chong
  • Lan, Qixun
  • Deng, Wei

Abstract

Infectious diseases pose a major threat to public health worldwide, often leading to serious social and economic damage. It is necessary to propose an effective control method to help the disease die out quickly. Given that the weight between nodes represents the intimacy of people, which seriously affects the spread of diseases, a fractional-order epidemic model based on weighted networks is proposed. The stability properties of the system’s equilibrium points are rigorously analyzed through the application of fractional-order Lyapunov stability theory. Furthermore, a finite-time controller is proposed for application in infectious disease management. Finite-time control facilitates rapid reduction of infection rates over short durations, thereby offering a potent instrument for responding to abrupt outbreaks. This control strategy not only substantially mitigates the adverse socioeconomic impacts of the epidemic but also expedites the system’s response time, enabling control measures to more rapidly adapt to the dynamic changes in the epidemic. Finally, the validity of theoretical results is verified by simulation.

Suggested Citation

  • Liu, Na & Wang, Jia & Sun, Junwei & Zhang, Chong & Lan, Qixun & Deng, Wei, 2025. "Dynamical analysis of a fractional-order epidemic weighted network model and its finite-time control," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004151
    DOI: 10.1016/j.chaos.2025.116402
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925004151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Dun & Wang, Xin, 2024. "Impact of positive and negative information on epidemic spread in a three-layer network," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    2. Ullah, Mohammad Sharif & Higazy, M. & Ariful Kabir, K.M., 2022. "Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Barman, Madhab & Mishra, Nachiketa, 2024. "Hopf bifurcation analysis for a delayed nonlinear-SEIR epidemic model on networks," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    4. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Kumawat, Nitesh & Rashid, Mubasher & Srivastava, Akriti & Tripathi, Jai Prakash, 2023. "Hysteresis and Hopf bifurcation: Deciphering the dynamics of an in-host model of SARS-CoV-2 with logistic target cell growth and sigmoidal immune response," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. Wu, Yucui & Zhang, Zhipeng & Song, Limei & Xia, Chengyi, 2024. "Global stability analysis of two strains epidemic model with imperfect vaccination and immunity waning in a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    7. Sushmit, Mushrafi Munim & Leon, Reyajul Hasan & Alam, Muntasir, 2024. "Dynamic vaccination strategies in dual-strain epidemics: A multi-agent-based game-theoretic approach on scale-free hybrid networks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    8. Zhang, Ge & Li, Zhiming & Din, Anwarud & Chen, Tao, 2024. "Dynamic analysis and optimal control of a stochastic COVID-19 model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 498-517.
    9. Hao, Wenhui & Zhang, Juping & Jin, Zhen, 2024. "Dynamic analysis and optimal control of HIV/AIDS model with ideological transfer," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 578-605.
    10. Higazy, M., 2020. "Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    11. Wu, Qingchu & Kabir, K.M. Ariful, 2023. "Compact pairwise methods for susceptible–infected–susceptible epidemics on weighted heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    12. Phukan, Jyotiska & Dutta, Hemen, 2023. "Dynamic analysis of a fractional order SIR model with specific functional response and Holling type II treatment rate," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Juhui Yan & Wanqin Wu & Qing Miao & Xuewen Tan, 2024. "Global Dynamics and Optimal Control of a Fractional-Order SIV Epidemic Model with Nonmonotonic Occurrence Rate," Mathematics, MDPI, vol. 12(17), pages 1-21, September.
    3. Xie, Xiaoxiao & Huo, Liang’an, 2024. "The coupled dynamics of information-behavior-epidemic propagation considering the heterogeneity of adoption thresholds and network structures in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 647(C).
    4. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Mahato, Kiriti Bhusan & Khatun, Mst Sebi & Ariful Kabir, K.M. & Das, Pritha, 2025. "Dynamical behaviors and social efficiency deficit analysis of an epidemic model with three combined strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 659(C).
    6. Chayu Yang & Bo Deng, 2024. "Dynamics of Infectious Diseases Incorporating a Testing Compartment," Mathematics, MDPI, vol. 12(12), pages 1-18, June.
    7. Giovanni Dieguez & Cristiane Batistela & José R. C. Piqueira, 2023. "Controlling COVID-19 Spreading: A Three-Level Algorithm," Mathematics, MDPI, vol. 11(17), pages 1-39, September.
    8. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    9. Sharafian, Amin & Kanesan, Jeevan & Khairuddin, Anis Salwa Mohd & Ramanathan, Anand & Sharifi, Alireza & Bai, Xiaoshan, 2023. "A novel approach to state estimation of HIV infection dynamics using fixed-time fractional order observer," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    10. Liu, Tongtao & Zhang, Yongping, 2024. "Tracking problem of the Julia set for the SIS model with saturated treatment function under noise," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    11. Liu, Li-Ying & Cai, Chao-Ran & Zhang, Si-Ping & Li, Bin-Quan, 2025. "Coexistence of positive and negative information in information-epidemic dynamics on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 666(C).
    12. Zhou, Jiaying & Ye, Yong & Arenas, Alex & Gómez, Sergio & Zhao, Yi, 2023. "Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Qin, Yuyan & Yang, Lixin & Li, Jia & Li, Mengjiao & Du, Meng Meng, 2024. "A simplicial SSIS epidemic model with the outgoing pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
    14. Sabah Bushaj & Xuecheng Yin & Arjeta Beqiri & Donald Andrews & İ. Esra Büyüktahtakın, 2023. "A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization," Annals of Operations Research, Springer, vol. 328(1), pages 245-277, September.
    15. Khajji, Bouchaib & Kouidere, Abdelfatah & Elhia, Mohamed & Balatif, Omar & Rachik, Mostafa, 2021. "Fractional optimal control problem for an age-structured model of COVID-19 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    16. Ping He & Yu Gao & Longfei Guo & Tongtong Huo & Yuxin Li & Xingren Zhang & Yunfeng Li & Cheng Peng & Fanyun Meng, 2021. "Evaluating the Disaster Risk of the COVID-19 Pandemic Using an Ecological Niche Model," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    17. Sushmit, Mushrafi Munim & Leon, Reyajul Hasan & Alam, Muntasir, 2024. "Dynamic vaccination strategies in dual-strain epidemics: A multi-agent-based game-theoretic approach on scale-free hybrid networks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    18. Aldila, Dipo, 2020. "Analyzing the impact of the media campaign and rapid testing for COVID-19 as an optimal control problem in East Java, Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    19. Li, Hang & Shen, Yongjun & Han, Yanjun & Dong, Jinlu & Li, Jian, 2023. "Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    20. Yu, Yue & Huo, Liang'an, 2025. "A co-evolutionary model of information, behavior, and epidemics in multiplex networks: Incorporating subjective and objective factors," Applied Mathematics and Computation, Elsevier, vol. 499(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.