IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i8p1376-d107058.html
   My bibliography  Save this article

Environmental and Socio-Economic Analysis of Naphtha Reforming Hydrogen Energy Using Input-Output Tables: A Case Study from Japan

Author

Listed:
  • Shunichi Hienuki

    (Center for Creation of Symbiosis Society with Risk (CCSSR), Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan)

Abstract

Comprehensive risk assessment across multiple fields is required to assess the potential utility of hydrogen energy technology. In this research, we analyzed environmental and socio-economic effects during the entire life cycle of a hydrogen energy system using input-output tables. The target system included hydrogen production by naphtha reforming, transportation to hydrogen stations, and FCV (Fuel Cell Vehicle) refilling. The results indicated that 31%, 44%, and 9% of the production, employment, and greenhouse gas (GHG) emission effects, respectively, during the manufacturing and construction stages were temporary. During the continuous operation and maintenance stages, these values were found to be 69%, 56%, and 91%, respectively. The effect of naphtha reforming was dominant in GHG emissions and the effect of electrical power input on the entire system was significant. Production and employment had notable effects in both the direct and indirect sectors, including manufacturing (pumps, compressors, and chemical machinery) and services (equipment maintenance and trade). This study used data to introduce a life cycle perspective to environmental and socio-economic analysis of hydrogen energy systems and the results will contribute to their comprehensive risk assessment in the future.

Suggested Citation

  • Shunichi Hienuki, 2017. "Environmental and Socio-Economic Analysis of Naphtha Reforming Hydrogen Energy Using Input-Output Tables: A Case Study from Japan," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1376-:d:107058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/8/1376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/8/1376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markaki, M. & Belegri-Roboli, A. & Michaelides, P. & Mirasgedis, S. & Lalas, D.P., 2013. "The impact of clean energy investments on the Greek economy: An input–output analysis (2010–2020)," Energy Policy, Elsevier, vol. 57(C), pages 263-275.
    2. Lehr, Ulrike & Nitsch, Joachim & Kratzat, Marlene & Lutz, Christian & Edler, Dietmar, 2008. "Renewable energy and employment in Germany," Energy Policy, Elsevier, vol. 36(1), pages 108-117, January.
    3. Lambert, Rosebud Jasmine & Silva, Patrícia Pereira, 2012. "The challenges of determining the employment effects of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4667-4674.
    4. Branscomb, Lewis M., 2006. "Sustainable cities: Safety and security," Technology in Society, Elsevier, vol. 28(1), pages 225-234.
    5. Benjamin McLellan & Qi Zhang & Hooman Farzaneh & N. Agya Utama & Keiichi N. Ishihara, 2012. "Resilience, Sustainability and Risk Management: A Focus on Energy," Challenges, MDPI, vol. 3(2), pages 1-30, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suyang Zhou & Yuxuan Zhuang & Wei Gu & Zhi Wu, 2018. "Operation and Economic Assessment of Hybrid Refueling Station Considering Traffic Flow Information," Energies, MDPI, vol. 11(8), pages 1-20, July.
    2. Obara, Shin'ya, 2019. "Energy and exergy flows of a hydrogen supply chain with truck transportation of ammonia or methyl cyclohexane," Energy, Elsevier, vol. 174(C), pages 848-860.
    3. Gupta, Ruchi & Guibentif, Thomas M.M. & Friedl, Markus & Parra, David & Patel, Martin Kumar, 2023. "Macroeconomic analysis of a new green hydrogen industry using Input-Output analysis: The case of Switzerland," Energy Policy, Elsevier, vol. 183(C).
    4. Luo, Bin & Huang, Guohe & Li, Jianyong & Liu, Lirong & Zhai, Mengyu & Pan, Xiaojie & Zhao, Kai, 2022. "Sector-level socio-economic and environmental effects of large-scale hydropower initiatives -- a multi-region multi-phase model for the Wudongde Hydropower Station," Applied Energy, Elsevier, vol. 317(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arvanitopoulos, T. & Agnolucci, P., 2020. "The long-term effect of renewable electricity on employment in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Damien Bazin & Emna Omri & Nouri Chtourou, 2015. "Solar Thermal Energy for Sustainable Development in Tunisia," Post-Print halshs-01070616, HAL.
    3. Behrens, Paul & Rodrigues, João F.D. & Brás, Tiago & Silva, Carlos, 2016. "Environmental, economic, and social impacts of feed-in tariffs: A Portuguese perspective 2000–2010," Applied Energy, Elsevier, vol. 173(C), pages 309-319.
    4. Cameron, Lachlan & van der Zwaan, Bob, 2015. "Employment factors for wind and solar energy technologies: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 160-172.
    5. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Thiel, Christian, 2015. "Employment effects of renewable electricity deployment. A novel methodology," Energy, Elsevier, vol. 91(C), pages 940-951.
    6. Omri, Emna & Chtourou, Nouri & Bazin, Damien, 2015. "Solar thermal energy for sustainable development in Tunisia: The case of the PROSOL project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1312-1323.
    7. Zhang, Sufang & Chen, Yang & Liu, Xiaoli & Yang, Mengshi & Xu, Liang, 2017. "Employment effects of solar PV industry in China: A spreadsheet-based analytical model," Energy Policy, Elsevier, vol. 109(C), pages 59-65.
    8. Ina Meyer & Mark Sommer, 2014. "Employment Effects of Renewable Energy Supply – A Meta Analysis. WWWforEurope Policy Paper No. 12," WIFO Studies, WIFO, number 47225, April.
    9. Hondo, Hiroki & Moriizumi, Yue, 2017. "Employment creation potential of renewable power generation technologies: A life cycle approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 128-136.
    10. Costantini, Valeria & Crespi, Francesco & Paglialunga, Elena, 2018. "The employment impact of private and public actions for energy efficiency: Evidence from European industries," Energy Policy, Elsevier, vol. 119(C), pages 250-267.
    11. Jinwon Bae & Sandy Dall'erba, 2016. "The economic impact of a new solar power plant in Arizona: Comparing the input-output results generated by JEDI vs. IMPLAN," Regional Science Policy & Practice, Wiley Blackwell, vol. 8(1-2), pages 61-73, March.
    12. Raitano, Michele & Romano, Eleonora & Zoppoli, Pietro, 2017. "Renewable energy sources in Italy: Sectorial intensity and effects on earnings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 117-127.
    13. Simas, Moana & Pacca, Sergio, 2014. "Assessing employment in renewable energy technologies: A case study for wind power in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 83-90.
    14. Saboori, Behnaz & Gholipour, Hassan F. & Rasoulinezhad, Ehsan & Ranjbar, Omid, 2022. "Renewable energy sources and unemployment rate: Evidence from the US states," Energy Policy, Elsevier, vol. 168(C).
    15. Yuan, Rong & Rodrigues, João F.D. & Tukker, Arnold & Behrens, Paul, 2018. "The impact of the expansion in non-fossil electricity infrastructure on China’s carbon emissions," Applied Energy, Elsevier, vol. 228(C), pages 1994-2008.
    16. Gulmira Azretbergenova & Beybit Syzdykov & Talgat Niyazov & Turysbekova Gulzhan & Nazira Yskak, 2021. "The Relationship between Renewable Energy Production and Employment in European Union Countries: Panel Data Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 20-26.
    17. Kandpal, Tara C. & Broman, Lars, 2014. "Renewable energy education: A global status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 300-324.
    18. Nasirov, Shahriyar & Girard, Aymeric & Peña, Cristobal & Salazar, Felipe & Simon, François, 2021. "Expansion of renewable energy in Chile: Analysis of the effects on employment," Energy, Elsevier, vol. 226(C).
    19. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2017. "Comparative analysis of direct employment generated by renewable and non-renewable power plants," Energy, Elsevier, vol. 139(C), pages 542-554.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1376-:d:107058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.