IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i5p771-d97908.html
   My bibliography  Save this article

Urban Plan and Water Infrastructures Planning: A Methodology Based on Spatial ANP

Author

Listed:
  • Michele Grimaldi

    (Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy)

  • Vincenzo Pellecchia

    (Water Management Authority AATO-1, 83100 Campania, Italy)

  • Isidoro Fasolino

    (Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy)

Abstract

Cities are exploding, occupying rural territory in dispersed and fragmented ways. A consequence of this phenomenon is that the demand for utilities includes more and more extensive territories. Among them, fulfilling the demand for services related to integrated water service presents many difficulties. The economic costs needed to meet service demand and the environmental costs associated with its non-fulfilment are inversely proportional to the population needing service in rural areas, since that population is distributed across a low-density gradient. Infrastructure planning, within the area of competence, generally follows a policy of economic sustainability, fixing a service coverage threshold in terms of a “sufficient” concentration of population and economic activity (91/271/CEE). This threshold, homogenous within the territorial limits of a water infrastructure plan, creates uncertainty in the planning of investments, which are not sized on the actual, appropriately spatialized, demand for service. Careful prediction of the location of infrastructure investments would guarantee not only economic savings but also reduce the environmental costs generated by the lack of utilities. Therefore, is necessary to create a link between water infrastructure planning and urban planning, which is responsible for the future spatial distribution of service demand. In this study, the relationships between the instruments of regulation and planning are compared by a multi-criteria spatial analysis network (analytic network process (ANP)). This method, tested on a sample of a city in southern Italy, allows us to optimize the design and location of the investment needed to meet the service criteria, looking at the actual efficiency of the networks. The result of this application is a suitability map that allows us to validate the criteria for defining urban transformations.

Suggested Citation

  • Michele Grimaldi & Vincenzo Pellecchia & Isidoro Fasolino, 2017. "Urban Plan and Water Infrastructures Planning: A Methodology Based on Spatial ANP," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:771-:d:97908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/5/771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/5/771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas L. Saaty & Luis G. Vargas, 2006. "Decision Making with the Analytic Network Process," International Series in Operations Research and Management Science, Springer, number 978-0-387-33987-0, September.
    2. Thomas L. Saaty, 2006. "The Analytic Network Process," International Series in Operations Research & Management Science, in: Decision Making with the Analytic Network Process, chapter 0, pages 1-26, Springer.
    3. Maria Cerreta & Pasquale De Toro, 2010. "Integrated spatial assessment for a creative decision-making process: a combined methodological approach to strategic environmental assessment," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 13(1/2), pages 17-30.
    4. Saaty, Thomas L., 1986. "A note on the AHP and expected value theory," Socio-Economic Planning Sciences, Elsevier, vol. 20(6), pages 397-398.
    5. H Voogd, 1988. "Multicriteria Evaluation: Measures, Manipulation, and Meaning—A Reply," Environment and Planning B, , vol. 15(1), pages 65-72, March.
    6. Unesco Unesco, 2015. "Water for a Sustainable World," Working Papers id:6657, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elias Naber & Rebekka Volk & Kai Mörmann & Denise Boehnke & Thomas Lützkendorf & Frank Schultmann, 2022. "Namares—A Surface Inventory and Intervention Assessment Model for Urban Resource Management," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    2. Yin-Hao Chiu & Yu-Yun Liu, 2021. "The Elaborated Assessment Framework of City Competitiveness from the Perspective of Regional Resource Integration," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    3. Michele Grimaldi & Monica Sebillo & Giuliana Vitiello & Vincenzo Pellecchia, 2020. "Planning and Managing the Integrated Water System: A Spatial Decision Support System to Analyze the Infrastructure Performances," Sustainability, MDPI, vol. 12(16), pages 1-24, August.
    4. Donatella Cialdea, 2020. "Landscape Features of Costal Waterfronts: Historical Aspects and Planning Issues," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    5. Schulze-González, Erik & Pastor-Ferrando, Juan-Pascual & Aragonés-Beltrán, Pablo, 2023. "Clustering and reference value for assessing influence in analytic network process without pairwise comparison matrices: Study of 17 real cases," Operations Research Perspectives, Elsevier, vol. 10(C).
    6. Enrico Sicignano & Giacomo Di Ruocco & Anna Stabile, 2019. "Quali—A Quantitative Environmental Assessment Method According to Italian CAM, for the Sustainable Design of Urban Neighbourhoods in Mediterranean Climatic Regions," Sustainability, MDPI, vol. 11(17), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Aghazadeh Ardebili & Elio Padoano & Antonella Longo & Antonio Ficarella, 2022. "The Risky-Opportunity Analysis Method (ROAM) to Support Risk-Based Decisions in a Case-Study of Critical Infrastructure Digitization," Risks, MDPI, vol. 10(3), pages 1-22, February.
    2. Ester Guijarro & Cristina Santadreu-Mascarell & Beatriz Blasco-Gallego & Lourdes Canós-Darós & Eugenia Babiloni, 2021. "On the Identification of the Key Factors for a Successful Use of Twitter as a Medium from a Social Marketing Perspective," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    3. Babak Daneshvar Rouyendegh & Asil Oztekin & Joseph Ekong & Ali Dag, 2019. "Measuring the efficiency of hospitals: a fully-ranking DEA–FAHP approach," Annals of Operations Research, Springer, vol. 278(1), pages 361-378, July.
    4. Clara Champalle & James D. Ford & Mya Sherman, 2015. "Prioritizing Climate Change Adaptations in Canadian Arctic Communities," Sustainability, MDPI, vol. 7(7), pages 1-25, July.
    5. Afsaneh Afzali & Soheil Sabri & M. Rashid & Jamal Mohammad Vali Samani & Ahmad Ludin, 2014. "Inter-Municipal Landfill Site Selection Using Analytic Network Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2179-2194, June.
    6. Baffoe, Gideon, 2019. "Exploring the utility of Analytic Hierarchy Process (AHP) in ranking livelihood activities for effective and sustainable rural development interventions in developing countries," Evaluation and Program Planning, Elsevier, vol. 72(C), pages 197-204.
    7. Sedigheh Meimandi Parizi & Mohammad Taleai & Ayyoob Sharifi, 2022. "A GIS-Based Multi-Criteria Analysis Framework to Evaluate Urban Physical Resilience against Earthquakes," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    8. Nikola Kadoić & Nina Begičević Ređep & Blaženka Divjak, 2018. "A new method for strategic decision-making in higher education," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 611-628, September.
    9. Chi-Yo Huang & Pei-Han Chung & Joseph Z. Shyu & Yao-Hua Ho & Chao-Hsin Wu & Ming-Che Lee & Ming-Jenn Wu, 2018. "Evaluation and Selection of Materials for Particulate Matter MEMS Sensors by Using Hybrid MCDM Methods," Sustainability, MDPI, vol. 10(10), pages 1-35, September.
    10. Oryani, Bahareh & Koo, Yoonmo & Rezania, Shahabaldin & Shafiee, Afsaneh, 2021. "Barriers to renewable energy technologies penetration: Perspective in Iran," Renewable Energy, Elsevier, vol. 174(C), pages 971-983.
    11. Ravi Kumar Gedela & K. Krishna Mohan & V. Kamakshi Prasad, 2018. "Application of BOCR models in service oriented architecture (SOA): study on model validation through quantification for QoS considerations," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1346-1354, December.
    12. Roberto Cervelló-Royo & Marina Segura & Regina García-Pérez & Baldomero Segura-García del Río, 2021. "An Analysis of Preferences in Housing Demand by Means of a Multicriteria Methodology (AHP). A More Sustainable Approach," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    13. Jing-Wei Liu & Che-Wei Chang & Yao-Ji Wang & Yi-Hui Liu, 2022. "Constructing a Decision Model for Health Club Members to Purchase Coaching Programs during the COVID-19 Epidemic," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    14. Patricija Bajec & Danijela Tuljak-Suban, 2022. "A Strategic Approach for Promoting Sustainable Crowdshipping in Last-Mile Deliveries," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    15. Babak Daneshvar Rouyendegh & Kazim Topuz & Ali Dag & Asil Oztekin, 2019. "An AHP-IFT Integrated Model for Performance Evaluation of E-Commerce Web Sites," Information Systems Frontiers, Springer, vol. 21(6), pages 1345-1355, December.
    16. Starr, Morgan & Joshi, Omkar & Will, Rodney E. & Zou, Chris B., 2019. "Perceptions regarding active management of the Cross-timbers forest resources of Oklahoma, Texas, and Kansas: A SWOT-ANP analysis," Land Use Policy, Elsevier, vol. 81(C), pages 523-530.
    17. Kuliš Marija Šiško, 2020. "Selection of Project Managers: An Overview," Business Systems Research, Sciendo, vol. 11(2), pages 99-116, October.
    18. J. Hummel & John Bridges & Maarten IJzerman, 2014. "Group Decision Making with the Analytic Hierarchy Process in Benefit-Risk Assessment: A Tutorial," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 7(2), pages 129-140, June.
    19. Thomas Saaty & Luis Vargas, 2012. "The possibility of group choice: pairwise comparisons and merging functions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(3), pages 481-496, March.
    20. Shahid Rasheed & ChangFeng Wang & Bruno Lucena, 2015. "Risk Leveling in Program Environments—A Structured Approach for Program Risk Management," Sustainability, MDPI, vol. 7(5), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:771-:d:97908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.