IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i2p225-d89558.html
   My bibliography  Save this article

Effects of Land Use Change for Crops on Water and Carbon Budgets in the Midwest USA

Author

Listed:
  • Jian Sun

    (Department of Earth System Science, University of California, Irvine, CA 92697, USA
    State Key Laboratory for Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, No. 20 Datun Road, Beijing 100101, China)

  • Tracy E. Twine

    (Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USA)

  • Jason Hill

    (Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA)

  • Ryan Noe

    (Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA)

  • Jiancheng Shi

    (State Key Laboratory for Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, No. 20 Datun Road, Beijing 100101, China)

  • Minmin Li

    (Renewable Resources Division, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, No. 20 Datun Road, Beijing 100101, China)

Abstract

Increasing demand for food and bioenergy has altered the global landscape dramatically in recent years. Land use and land cover change affects the environmental system in many ways through biophysical and biogeochemical mechanisms. In this study, we evaluate the impacts of land use and land cover change driven by recent crop expansion and conversion on the water budget, carbon exchange, and carbon storage in the Midwest USA. A dynamic global vegetation model was used to simulate and examine the impacts of landscape change in a historical case based on crop distribution data from the United States Department of Agriculture National Agricultural Statistics Services. The simulation results indicate that recent crop expansion not only decreased soil carbon sequestration (60 Tg less of soil organic carbon) and net carbon flux into ecosystems (3.7 Tg·year −1 less of net biome productivity), but also lessened water consumption through evapotranspiration (1.04 × 10 10 m 3 ·year −1 less) over 12 states in the Midwest. More water yield at the land surface does not necessarily make more water available for vegetation. Crop residue removal might also exacerbate the soil carbon loss.

Suggested Citation

  • Jian Sun & Tracy E. Twine & Jason Hill & Ryan Noe & Jiancheng Shi & Minmin Li, 2017. "Effects of Land Use Change for Crops on Water and Carbon Budgets in the Midwest USA," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:225-:d:89558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/2/225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/2/225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adam J. Liska & Haishun Yang & Maribeth Milner & Steve Goddard & Humberto Blanco-Canqui & Matthew P. Pelton & Xiao X. Fang & Haitao Zhu & Andrew E. Suyker, 2014. "Biofuels from crop residue can reduce soil carbon and increase CO2 emissions," Nature Climate Change, Nature, vol. 4(5), pages 398-401, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuzhe Li & Jiangwen Fan & Zhongmin Hu, 2018. "Comparison of Carbon-Use Efficiency Among Different Land-Use Patterns of the Temperate Steppe in the Northern China Pastoral Farming Ecotone," Sustainability, MDPI, vol. 10(2), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoekman, S. Kent & Broch, Amber & Liu, Xiaowei (Vivian), 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part I – Impacts on water, soil, and air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3140-3158.
    2. Ruiqing Miao & Madhu Khanna, 2017. "Effectiveness of the Biomass Crop Assistance Program: Roles of Behavioral Factors, Credit Constraint, and Program Design," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(4), pages 584-608.
    3. Zhao, Yan & Damgaard, Anders & Xu, Yingjie & Liu, Shan & Christensen, Thomas H., 2019. "Bioethanol from corn stover – Global warming footprint of alternative biotechnologies," Applied Energy, Elsevier, vol. 247(C), pages 237-253.
    4. Pontau, Patricia & Hou, Yi & Cai, Hua & Zhen, Yi & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2015. "Assessing land-use impacts by clean vehicle systems," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 112-119.
    5. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    6. Long Nguyen & Kara G. Cafferty & Erin M. Searcy & Sabrina Spatari, 2014. "Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas," Energies, MDPI, vol. 7(11), pages 1-22, November.
    7. Ji, Xi & Liu, Yifang & Meng, Jing & Wu, Xudong, 2020. "Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers," Applied Energy, Elsevier, vol. 276(C).
    8. Pinyi Su & Muhammad Imran & Muhammad Nadeem & Shamsheer ul Haq, 2023. "The Role of Environmental Law in Farmers’ Environment-Protecting Intentions and Behavior Based on Their Legal Cognition: A Case Study of Jiangxi Province, China," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
    9. Mads Greaker & Michael Hoel & Knut Einar Rosendahl, 2014. "Does a Renewable Fuel Standard for Biofuels Reduce Climate Costs?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(3), pages 337-363.
    10. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
    11. Peng Zhang & Yuxin He & Tao Ren & Yang Wang & Chao Liu & Naiwen Li & Longguo Li, 2021. "The Crop Residue Removal Threshold Ensures Sustainable Agriculture in the Purple Soil Region of Sichuan, China," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    12. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    13. Maggie R. Davis & Bruno J. R. Alves & Douglas L. Karlen & Keith L. Kline & Marcelo Galdos & Dana Abulebdeh, 2017. "Review of Soil Organic Carbon Measurement Protocols: A US and Brazil Comparison and Recommendation," Sustainability, MDPI, vol. 10(1), pages 1-20, December.
    14. Koponen, Kati & Soimakallio, Sampo & Kline, Keith L. & Cowie, Annette & Brandão, Miguel, 2018. "Quantifying the climate effects of bioenergy – Choice of reference system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2271-2280.
    15. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    16. Trindade, F. & Fulginiti, L. & Perrin, R., 2018. "Irrigation and Climate Effects on Land Productivity in the U.S. Central Plains," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277264, International Association of Agricultural Economists.
    17. Karlsson, Hanna & Ahlgren, Serina & Strid, Ingrid & Hansson, Per-Anders, 2015. "Faba beans for biorefinery feedstock or feed? Greenhouse gas and energy balances of different applications," Agricultural Systems, Elsevier, vol. 141(C), pages 138-148.
    18. Weiwei Wang, 2023. "Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China," Energies, MDPI, vol. 16(6), pages 1-22, March.
    19. Dumortier, Jerome, 2015. "Impact of agronomic uncertainty in biomass production and endogenous commodity prices on cellulosic biofuel feedstock composition," IU SPEA AgEcon Papers 198707, Indiana University, IU School of Public and Environmental Affairs.
    20. Monforti, F. & Lugato, E. & Motola, V. & Bodis, K. & Scarlat, N. & Dallemand, J.-F., 2015. "Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 519-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:225-:d:89558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.