IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i7p666-d73905.html
   My bibliography  Save this article

Assessing the Impacts of Chinese Sustainable Ground Transportation on the Dynamics of Urban Growth: A Case Study of the Hangzhou Bay Bridge

Author

Listed:
  • Qing Zheng

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Shan He

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Lingyan Huang

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Xinyu Zheng

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Yi Pan

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Amir Reza Shahtahmassebi

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Zhangquan Shen

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Zhoulu Yu

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Ke Wang

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

Abstract

Although China has promoted the construction of Chinese Sustainable Ground Transportation (CSGT) to guide sustainable development, it may create substantial challenges, such as rapid urban growth and land limitations. This research assessed the effects of the Hangzhou Bay Bridge on impervious surface growth in Cixi County, Ningbo, Zhejiang Province, China. Changes in impervious surfaces were mapped based on Landsat images from 1995, 2002, and 2009 using a combination of multiple endmember spectral mixture analysis (MESMA) and landscape metrics. The results indicated that the area and density of impervious surfaces increased significantly during construction of the Hangzhou Bay Bridge (2002–2009). Additionally, the bridge and connected road networks promoted urban development along major roads, resulting in compact growth patterns of impervious surfaces in urbanized regions. Moreover, the Hangzhou Bay Bridge promoted the expansion and densification of impervious surfaces in Hangzhou Bay District, which surrounds the bridge. The bridge also accelerated socioeconomic growth in the area, promoting rapid urban growth in Cixi County between 2002 and 2009. Overall, the Hangzhou Bay Bridge is an important driver of urban growth in Cixi County, and policy suggestions for sustainable urban growth should be adopted in the future.

Suggested Citation

  • Qing Zheng & Shan He & Lingyan Huang & Xinyu Zheng & Yi Pan & Amir Reza Shahtahmassebi & Zhangquan Shen & Zhoulu Yu & Ke Wang, 2016. "Assessing the Impacts of Chinese Sustainable Ground Transportation on the Dynamics of Urban Growth: A Case Study of the Hangzhou Bay Bridge," Sustainability, MDPI, vol. 8(7), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:666-:d:73905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/7/666/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/7/666/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gan, Lin, 2003. "Globalization of the automobile industry in China: dynamics and barriers in greening of the road transportation," Energy Policy, Elsevier, vol. 31(6), pages 537-551, May.
    2. Chen, Chia-Lin, 2012. "Reshaping Chinese space-economy through high-speed trains: opportunities and challenges," Journal of Transport Geography, Elsevier, vol. 22(C), pages 312-316.
    3. Patarasuk, Risa, 2013. "Road network connectivity and land-cover dynamics in Lop Buri province, Thailand," Journal of Transport Geography, Elsevier, vol. 28(C), pages 111-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahtahmassebi, Amir Reza & Wu, Chun & Blackburn, George Alan & Zheng, Qing & Huang, Lingyan & Shortridge, Ashton & Shahtahmassebi, Golnaz & Jiang, Ruowei & He, Shan & Wang, Ke & Lin, Yue & Clarke, Ke, 2018. "How do modern transportation projects impact on development of impervious surfaces via new urban area and urban intensification? Evidence from Hangzhou Bay Bridge, China," Land Use Policy, Elsevier, vol. 77(C), pages 479-497.
    2. Ghali Abdullahi Abubakar & Jiexia Wu & Amir Reza Shahtahmassebi & Ke Wang, 2020. "Necessity of a Multifaceted Approach in Analyzing Growth of Impervious Surfaces," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    3. Yi Zhang & Dapeng Zhang & Haoyu Jiang, 2023. "A Review of Artificial Intelligence-Based Optimization Applications in Traditional Active Maritime Collision Avoidance," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    4. Fiedeń, Łukasz, 2019. "Changes in land use in the communes crossed by the A4 motorway in Poland," Land Use Policy, Elsevier, vol. 85(C), pages 397-406.
    5. Jiayu Huang & Suguru Mori & Rie Nomura, 2018. "Comparing Characteristics of Environmental Behaviors and Spatial Types in Open and Gated Housing Blocks: A Case Study of Changchun, China," Sustainability, MDPI, vol. 10(6), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhipeng Tang & Ziao Mei & Jialing Zou, 2021. "Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?," Energies, MDPI, vol. 14(15), pages 1-18, July.
    2. Yahong Liu & Daisheng Tang & Fengyu Wang, 2024. "Research on the spatial spillover effect of high-speed railway on the income of urban residents in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    3. Yang, Xiaolan & Wang, Rui & Guo, Dongmei & Sun, Weizeng, 2020. "The reconfiguration effect of China's high-speed railway on intercity connection ——A study based on media attention index," Transport Policy, Elsevier, vol. 95(C), pages 47-56.
    4. Hickman, Robin & Chen, Chia-Lin & Chow, Andy & Saxena, Sharad, 2015. "Improving interchanges in China: the experiential phenomenon," Journal of Transport Geography, Elsevier, vol. 42(C), pages 175-186.
    5. Shaheen, Susan & Martin, Elliot, 2006. "Assessing Early Market Potential for Carsharing in China: A Case Study of Beijing," Institute of Transportation Studies, Working Paper Series qt9hf9784f, Institute of Transportation Studies, UC Davis.
    6. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun & Dunford, Michael, 2014. "Impacts on accessibility of China’s present and future HSR network," Journal of Transport Geography, Elsevier, vol. 40(C), pages 123-132.
    7. Pearce, Joshua M. & Hanlon, Jason T., 2007. "Energy conservation from systematic tire pressure regulation," Energy Policy, Elsevier, vol. 35(4), pages 2673-2677, April.
    8. Poudenx, Pascal, 2008. "The effect of transportation policies on energy consumption and greenhouse gas emission from urban passenger transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 901-909, July.
    9. Shao, Shuai & Tian, Zhihua & Yang, Lili, 2017. "High speed rail and urban service industry agglomeration: Evidence from China's Yangtze River Delta region," Journal of Transport Geography, Elsevier, vol. 64(C), pages 174-183.
    10. Cao, Jing & Liu, Xiaoyue Cathy & Wang, Yinhai & Li, Qingquan, 2013. "Accessibility impacts of China’s high-speed rail network," Journal of Transport Geography, Elsevier, vol. 28(C), pages 12-21.
    11. Shahid Yusuf & Kaoru Nabeshima, 2009. "Growth through Innovation : An Industrial Strategy for Shanghai," World Bank Publications - Reports 18613, The World Bank Group.
    12. Xiangjing Zeng & Yong Ma & Jie Ren & Biao He, 2022. "Analysis of the Green Development Effects of High-Speed Railways Based on Eco-Efficiency: Evidence from Multisource Remote Sensing and Statistical Data of Urban Agglomerations in the Middle Reaches of," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    13. Rui Wang, 2011. "Environmental and resource sustainability of Chinese cities: A review of issues, policies, practices and effects," Natural Resources Forum, Blackwell Publishing, vol. 35(2), pages 112-121, May.
    14. Masárová Jana & Ivanová Eva, 2016. "Road infrastructure in the regions of the Slovak Republic and Poland," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 33(33), pages 79-90, September.
    15. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    16. Hanming Fang & Long Wang & Yang Yang, 2020. "Competition and Quality: Evidence from High-Speed Railways and Airlines," PIER Working Paper Archive 20-022, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    17. Jianfeng Zhu & Lijun Yu & Yueping Nie & Fang Liu & Yu Sun & Yuanzhi Zhang & Wenping Song, 2019. "Ancient Environmental Preference and the Site Selection Pattern Based on the Edge Effect and Network Structure in An Ecosystem," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    18. Zhang Weiyang & Derudder Ben, 2016. "Approximating actual flows in physical infrastructure networks: the case of the Yangtze River Delta high-speed railway network," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 31(31), pages 145-160, March.
    19. Wu, Kuo-Jui & Liao, Ching-Jong & Tseng, Ming-Lang & Chiu, Anthony S.F., 2015. "Exploring decisive factors in green supply chain practices under uncertainty," International Journal of Production Economics, Elsevier, vol. 159(C), pages 147-157.
    20. Chen, Zhenhua, 2023. "Socioeconomic Impacts of high-speed rail: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:666-:d:73905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.