IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i4p350-d67995.html
   My bibliography  Save this article

Comparative Analysis of On- and Off-Grid Electrification: The Case of Two South Korean Islands

Author

Listed:
  • Heetae Kim

    (Graduate School of Innovation and Technology, KAIST, 2225, N5, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea)

  • Seoin Baek

    (Graduate School of Innovation and Technology, KAIST, 2225, N5, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
    All of the authors contributed equally to the work.)

  • Kyu Ha Choi

    (Graduate School of Innovation and Technology, KAIST, 2225, N5, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
    All of the authors contributed equally to the work.)

  • Dojin Kim

    (Graduate School of International Studies, Yonsei University, New Millennium Hall #510, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
    All of the authors contributed equally to the work.)

  • Seongmin Lee

    (Graduate School of Innovation and Technology, KAIST, 2225, N5, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
    All of the authors contributed equally to the work.)

  • Dahill Kim

    (Graduate School of Innovation and Technology, KAIST, 2225, N5, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
    All of the authors contributed equally to the work.)

  • Hyun Joon Chang

    (Graduate School of Innovation and Technology, KAIST, 2225, N5, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
    All of the authors contributed equally to the work.)

Abstract

South Korea’s main industry is the manufacturing industry, and it requires stable energy. Korea heavily relies on importing oils to produce energy, thus efficient energy management is critical. This is why many renewable and smart energy policies and infrastructure planning are being set up currently. Supplying reliable and sustainable renewable energy to remote areas has especially been questioned; therefore, adopting sustainable and clean energy based on renewable resources cannot be delayed any more. This research examines the most economically, technologically and environmentally suitable energy grid of two South Korean Islands. Several hybrid energy system configurations that analyze and identify the optimal grid-connected and grid-independent hybrid power generation systems are simulated in this study. According to the results of the study, the optimal regionally detached power generation system was the wind-PV-battery-converter hybrid system. At the end of this paper, implications and limitations are discussed.

Suggested Citation

  • Heetae Kim & Seoin Baek & Kyu Ha Choi & Dojin Kim & Seongmin Lee & Dahill Kim & Hyun Joon Chang, 2016. "Comparative Analysis of On- and Off-Grid Electrification: The Case of Two South Korean Islands," Sustainability, MDPI, vol. 8(4), pages 1-13, April.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:4:p:350-:d:67995
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/4/350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/4/350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayoub, Nasser & Yuji, Naka, 2012. "Governmental intervention approaches to promote renewable energies—Special emphasis on Japanese feed-in tariff," Energy Policy, Elsevier, vol. 43(C), pages 191-201.
    2. Kim, Hoseok & Shin, Eui-soon & Chung, Woo-jin, 2011. "Energy demand and supply, energy policies, and energy security in the Republic of Korea," Energy Policy, Elsevier, vol. 39(11), pages 6882-6897.
    3. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2015. "Optimal Hybrid Renewable Power System for an Emerging Island of South Korea: The Case of Yeongjong Island," Sustainability, MDPI, vol. 7(10), pages 1-17, October.
    4. Kim, Heetae & Park, Eunil & Kwon, Sang Jib & Ohm, Jay Y. & Chang, Hyun Joon, 2014. "An integrated adoption model of solar energy technologies in South Korea," Renewable Energy, Elsevier, vol. 66(C), pages 523-531.
    5. Moosavian, S.M. & Rahim, N.A. & Selvaraj, J. & Solangi, K.H., 2013. "Energy policy to promote photovoltaic generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 44-58.
    6. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    7. Lee, Taehwa & Lee, Taedong & Lee, Yujin, 2014. "An experiment for urban energy autonomy in Seoul: The One ‘Less’ Nuclear Power Plant policy," Energy Policy, Elsevier, vol. 74(C), pages 311-318.
    8. Karakoulidis, K. & Mavridis, K. & Bandekas, D.V. & Adoniadis, P. & Potolias, C. & Vordos, N., 2011. "Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system," Renewable Energy, Elsevier, vol. 36(8), pages 2238-2244.
    9. Kusakana, Kanzumba & Vermaak, Herman Jacobus, 2013. "Hybrid renewable power systems for mobile telephony base stations in developing countries," Renewable Energy, Elsevier, vol. 51(C), pages 419-425.
    10. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    11. Liu, Gang & Rasul, M.G. & Amanullah, M.T.O. & Khan, M.M.K., 2012. "Techno-economic simulation and optimization of residential grid-connected PV system for the Queensland climate," Renewable Energy, Elsevier, vol. 45(C), pages 146-155.
    12. Nema, Pragya & Nema, R.K. & Rangnekar, Saroj, 2009. "A current and future state of art development of hybrid energy system using wind and PV-solar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2096-2103, October.
    13. Ashourian, M.H. & Cherati, S.M. & Mohd Zin, A.A. & Niknam, N. & Mokhtar, A.S. & Anwari, M., 2013. "Optimal green energy management for island resorts in Malaysia," Renewable Energy, Elsevier, vol. 51(C), pages 36-45.
    14. Lidula, N.W.A. & Rajapakse, A.D., 2011. "Microgrids research: A review of experimental microgrids and test systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 186-202, January.
    15. Kitzing, Lena & Mitchell, Catherine & Morthorst, Poul Erik, 2012. "Renewable energy policies in Europe: Converging or diverging?," Energy Policy, Elsevier, vol. 51(C), pages 192-201.
    16. Kim, Heetae & Baek, Seoin & Park, Eunil & Chang, Hyun Joon, 2014. "Optimal green energy management in Jeju, South Korea – On-grid and off-grid electrification," Renewable Energy, Elsevier, vol. 69(C), pages 123-133.
    17. Hirschl, Bernd, 2009. "International renewable energy policy--between marginalization and initial approaches," Energy Policy, Elsevier, vol. 37(11), pages 4407-4416, November.
    18. Batas Bjelić, Ilija & Rajaković, Nikola & Ćosić, Boris & Duić, Neven, 2013. "Increasing wind power penetration into the existing Serbian energy system," Energy, Elsevier, vol. 57(C), pages 30-37.
    19. Hafez, Omar & Bhattacharya, Kankar, 2012. "Optimal planning and design of a renewable energy based supply system for microgrids," Renewable Energy, Elsevier, vol. 45(C), pages 7-15.
    20. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    21. Kyeongsik Yoo & Eunil Park & Heetae Kim & Jay Y. Ohm & Taeyong Yang & Ki Joon Kim & Hyun Joon Chang & Angel P. Del Pobil, 2014. "Optimized Renewable and Sustainable Electricity Generation Systems for Ulleungdo Island in South Korea," Sustainability, MDPI, vol. 6(11), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    2. Jamiu Omotayo Oladigbolu & Makbul A. M. Ramli & Yusuf A. Al-Turki, 2019. "Techno-Economic and Sensitivity Analyses for an Optimal Hybrid Power System Which Is Adaptable and Effective for Rural Electrification: A Case Study of Nigeria," Sustainability, MDPI, vol. 11(18), pages 1-25, September.
    3. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    4. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    5. Akbar Maleki & Marc A. Rosen & Fathollah Pourfayaz, 2017. "Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    6. Hyeon-Jin Moon & Young Jin Kim & Jae Won Chang & Seung-Il Moon, 2019. "Decentralised Active Power Control Strategy for Real-Time Power Balance in an Isolated Microgrid with an Energy Storage System and Diesel Generators," Energies, MDPI, vol. 12(3), pages 1-22, February.
    7. Heetae Kim & Jinwoo Bae & Seoin Baek & Donggyun Nam & Hyunsung Cho & Hyun Joon Chang, 2017. "Comparative Analysis between the Government Micro-Grid Plan and Computer Simulation Results Based on Real Data: The Practical Case for a South Korean Island," Sustainability, MDPI, vol. 9(2), pages 1-18, January.
    8. Dahyun Kang & Tae Yong Jung, 2020. "Renewable Energy Options for a Rural Village in North Korea," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    9. Weibo Zhao & Dongxiao Niu, 2017. "Prediction of CO 2 Emission in China’s Power Generation Industry with Gauss Optimized Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression," Sustainability, MDPI, vol. 9(12), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2015. "Optimal Hybrid Renewable Power System for an Emerging Island of South Korea: The Case of Yeongjong Island," Sustainability, MDPI, vol. 7(10), pages 1-17, October.
    2. Heetae Kim & Jinwoo Bae & Seoin Baek & Donggyun Nam & Hyunsung Cho & Hyun Joon Chang, 2017. "Comparative Analysis between the Government Micro-Grid Plan and Computer Simulation Results Based on Real Data: The Practical Case for a South Korean Island," Sustainability, MDPI, vol. 9(2), pages 1-18, January.
    3. Baek, Seoin & Park, Eunil & Kim, Min-Gil & Kwon, Sang Jib & Kim, Ki Joon & Ohm, Jay Y. & del Pobil, Angel P., 2016. "Optimal renewable power generation systems for Busan metropolitan city in South Korea," Renewable Energy, Elsevier, vol. 88(C), pages 517-525.
    4. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2016. "Optimal Hybrid Renewable Airport Power System: Empirical Study on Incheon International Airport, South Korea," Sustainability, MDPI, vol. 8(6), pages 1-13, June.
    5. Sangjib Kwon & Hyungbae Gil & Seoin Baek & Heetae Kim, 2022. "Optimal Solution for a Renewable-Energy-Generation System at a Private Educational Institute in South Korea," Energies, MDPI, vol. 15(24), pages 1-11, December.
    6. Park, Eunil & Kwon, Sang Jib, 2016. "Solutions for optimizing renewable power generation systems at Kyung-Hee University׳s Global Campus, South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 439-449.
    7. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    8. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    9. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    10. Batas Bjelic, Ilija & Ciric, Rade M., 2014. "Optimal distributed generation planning at a local level – A review of Serbian renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 79-86.
    11. Jeong, Gicheol, 2013. "Assessment of government support for the household adoption of micro-generation systems in Korea," Energy Policy, Elsevier, vol. 62(C), pages 573-581.
    12. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    13. Nam, Hoseok & Nam, Hyungseok & Lee, Doyeon, 2021. "Potential of hydrogen replacement in natural-gas-powered fuel cells in Busan, South Korea based on the 2050 clean energy Master Plan of Busan Metropolitan City," Energy, Elsevier, vol. 221(C).
    14. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    15. Kim, Heetae & Baek, Seoin & Park, Eunil & Chang, Hyun Joon, 2014. "Optimal green energy management in Jeju, South Korea – On-grid and off-grid electrification," Renewable Energy, Elsevier, vol. 69(C), pages 123-133.
    16. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    17. Yahya Z. Alharthi, 2023. "Performance Analysis Using Multi-Year Parameters for a Grid-Connected Wind Power System," Energies, MDPI, vol. 16(5), pages 1-20, February.
    18. Andrea Micangeli & Riccardo Del Citto & Isaac Nzue Kiva & Simone Giovanni Santori & Valeria Gambino & Jeremiah Kiplagat & Daniele Viganò & Davide Fioriti & Davide Poli, 2017. "Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya," Energies, MDPI, vol. 10(12), pages 1-23, December.
    19. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    20. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:4:p:350-:d:67995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.