IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i9p12149-12163d55207.html
   My bibliography  Save this article

Sustainable Ethanol Production from Common Reed ( Phragmites australis ) through Simultaneuos Saccharification and Fermentation

Author

Listed:
  • Franco Cotana

    (CIRIAF-CRB Section, University of Perugia, Via G.Duranti 67, Perugia 06125, Italy)

  • Gianluca Cavalaglio

    (CIRIAF-CRB Section, University of Perugia, Via G.Duranti 67, Perugia 06125, Italy)

  • Anna Laura Pisello

    (CIRIAF-CRB Section, University of Perugia, Via G.Duranti 67, Perugia 06125, Italy)

  • Mattia Gelosia

    (CIRIAF-CRB Section, University of Perugia, Via G.Duranti 67, Perugia 06125, Italy)

  • David Ingles

    (CIRIAF-CRB Section, University of Perugia, Via G.Duranti 67, Perugia 06125, Italy)

  • Enrico Pompili

    (CIRIAF-CRB Section, University of Perugia, Via G.Duranti 67, Perugia 06125, Italy)

Abstract

Phragmites australis (common reed) is a perennial grass that grows in wetlands or near inland waterways. Due to its fast-growing properties and low requirement in nutrients and water, this arboreal variety is recognized as a promising source of renewable energy although it is one of the least characterized energy crops. In this experiment, the optimization of the bioethanol production process from Phragmites australis was carried out. Raw material was first characterized according to the standard procedure (NREL) to evaluate its composition in terms of cellulose, hemicellulose, and lignin content. Common reed was pretreated by steam explosion process at three different severity factor (R 0 ) values. The pretreatment was performed in order to reduce biomass recalcitrance and to make cellulose more accessible to enzymatic attack. After the pretreatment, a water insoluble substrate (WIS) rich in cellulose and lignin and a liquid fraction rich in pentose sugars (xylose and arabinose) and inhibitors were collected and analyzed. The simultaneous saccharification and fermentation (SSF) of the WIS was performed at three different solid loadings (SL) 10%, 15%, 20% ( w / w ). The same enzyme dosage, equal to 20% (g enzyme/g cellulose), was used for all the WIS loadings. The efficiency of the whole process was evaluated in terms of ethanol overall yield (g ethanol/100 g raw material). The maximum ethanol overall yields achieved were 16.56 and 15.80 g ethanol/100 g RM dry basis for sample AP10 and sample AP4.4, respectively. The yields were reached working at lower solid loading (10%) and at the intermediate LogR 0 value for the former and at intermediate solid loading (15%) and high LogR 0 value for the latter, respectively.

Suggested Citation

  • Franco Cotana & Gianluca Cavalaglio & Anna Laura Pisello & Mattia Gelosia & David Ingles & Enrico Pompili, 2015. "Sustainable Ethanol Production from Common Reed ( Phragmites australis ) through Simultaneuos Saccharification and Fermentation," Sustainability, MDPI, vol. 7(9), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:9:p:12149-12163:d:55207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/9/12149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/9/12149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    2. Ruiz, Héctor A. & Rodríguez-Jasso, Rosa M. & Fernandes, Bruno D. & Vicente, António A. & Teixeira, José A., 2013. "Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 35-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Piotr Banaszuk, 2021. "Specific Methane Yield of Wetland Biomass in Dry and Wet Fermentation Technologies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    2. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    3. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Grzegorz Zając & Piotr Banaszuk, 2023. "Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production," Energies, MDPI, vol. 16(2), pages 1-25, January.
    4. Azim Baibagyssov & Niels Thevs & Sabir Nurtazin & Rainer Waldhardt & Volker Beckmann & Ruslan Salmurzauly, 2020. "Biomass Resources of Phragmites australis in Kazakhstan: Historical Developments, Utilization, and Prospects," Resources, MDPI, vol. 9(6), pages 1-25, June.
    5. Anna Laura Pisello & Claudia Fabiani & Nastaran Makaremi & Veronica Lucia Castaldo & Gianluca Cavalaglio & Andrea Nicolini & Marco Barbanera & Franco Cotana, 2016. "Sustainable New Brick and Thermo-Acoustic Insulation Panel from Mineralization of Stranded Driftwood Residues," Energies, MDPI, vol. 9(8), pages 1-20, August.
    6. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    7. Linda Schroedter & Roland Schneider & Lisa Remus & Joachim Venus, 2020. "L-(+)-Lactic Acid from Reed: Comparing Various Resources for the Nutrient Provision of B. coagulans," Resources, MDPI, vol. 9(7), pages 1-13, July.
    8. Musaab O. El-Faroug & Fuwu Yan & Maji Luo & Richard Fiifi Turkson, 2016. "Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline," Energies, MDPI, vol. 9(12), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    2. Sharifzadeh, Mahdi & Wang, Lei & Shah, Nilay, 2015. "Integrated biorefineries: CO2 utilization for maximum biomass conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 151-161.
    3. Melts, Indrek & Ivask, Mari & Geetha, Mohan & Takeuchi, Kazuhiko & Heinsoo, Katrin, 2019. "Combining bioenergy and nature conservation: An example in wetlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 293-302.
    4. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    5. Filimonau, Viachaslau & Högström, Michaela, 2017. "The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 84-94.
    6. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    7. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    8. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    9. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    10. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    11. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    12. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    13. Iraklis Zahos-Siagos & Vlasios Karathanassis & Dimitrios Karonis, 2018. "Exhaust Emissions and Physicochemical Properties of n -Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers," Energies, MDPI, vol. 11(12), pages 1-20, December.
    14. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    15. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    17. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    18. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    19. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Hívila M. P. Marreiro & Rogério S. Peruchi & Riuzuani M. B. P. Lopes & Silvia L. F. Andersen & Sayonara A. Eliziário & Paulo Rotella Junior, 2021. "Empirical Studies on Biomass Briquette Production: A Literature Review," Energies, MDPI, vol. 14(24), pages 1-40, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:9:p:12149-12163:d:55207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.