IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i3p2454-2472d46206.html
   My bibliography  Save this article

Sustainability Assessment of the Residential Land Use in Seven Boroughs of the Island of Montreal, Canada

Author

Listed:
  • Ricardo Enrique Vega-Azamar

    (Station Expérimentale des Procédés Pilotes en Environnement, École de Technologie Supérieure, Université du Québec, 1100, rue Notre-Dame Ouest Local A-1500, Quebec, MN H3C 1K3, Canada)

  • Rabindranarth Romero-López

    (Unidad de Investigación Especializada en Hidroinformática y Tecnología Ambiental, Facultad de Ingeniería Civil, Universidad Veracruzana, Lomas del Estadio s/n, Zona Universitaria, Xalapa, 91000 Veracruz, Mexico
    These authors contributed equally to this work.)

  • Mathias Glaus

    (Station Expérimentale des Procédés Pilotes en Environnement, École de Technologie Supérieure, Université du Québec, 1100, rue Notre-Dame Ouest Local A-1500, Quebec, MN H3C 1K3, Canada
    These authors contributed equally to this work.)

  • Norma Angélica Oropeza-García

    (División de Ciencias e Ingeniería, Universidad de Quintana Roo, Boulevard Bahía s/n Esquina Ignacio Comonfort, Col. Del Bosque, Chetumal, 77019 Quintana Roo, Mexico
    These authors contributed equally to this work.)

  • Robert Hausler

    (Station Expérimentale des Procédés Pilotes en Environnement, École de Technologie Supérieure, Université du Québec, 1100, rue Notre-Dame Ouest Local A-1500, Quebec, MN H3C 1K3, Canada
    These authors contributed equally to this work.)

Abstract

High resource utilization in the residential sector, and the associated environmental impacts, are central issues in the growth of urban regions. Land-use urban planning is a primary instrument for the proper development of cities; an important point is the consideration of the urban form’s influence on resource utilization intensity. Emergy synthesis, an energy-based methodological approach that allows the quantification and integration of both natural and human-generated flows interacting in urban environments, was used to assess sustainability of the residential land use of seven boroughs on the Island of Montreal. Natural resources, food, water, acquired goods and services, electricity and fuels were the main flows considered in the analysis. Results suggest that income, household size and distance to downtown are the variables affecting resource utilization intensity more noticeably and that allocation of green area coverage is an important parameter for controlling land use intensity. With the procedure used for calculating resource use intensity in the seven boroughs, it is possible to generate a tool to support urban planning decision-making for assessing sustainable development scenarios. Future research should consider urban green space potential for accommodating local waste treatment systems, acting as a greenhouse gas emissions sink and promoting human health.

Suggested Citation

  • Ricardo Enrique Vega-Azamar & Rabindranarth Romero-López & Mathias Glaus & Norma Angélica Oropeza-García & Robert Hausler, 2015. "Sustainability Assessment of the Residential Land Use in Seven Boroughs of the Island of Montreal, Canada," Sustainability, MDPI, vol. 7(3), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:3:p:2454-2472:d:46206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/3/2454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/3/2454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    2. Zhang, Yan & Yang, Zhifeng & Liu, Gengyuan & Yu, Xiangyi, 2011. "Emergy analysis of the urban metabolism of Beijing," Ecological Modelling, Elsevier, vol. 222(14), pages 2377-2384.
    3. Arnold Tukker & Maurie J. Cohen & Klaus Hubacek & Oksana Mont, 2010. "The Impacts of Household Consumption and Options for Change," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 13-30, January.
    4. Muniz, Ivan & Galindo, Anna, 2005. "Urban form and the ecological footprint of commuting. The case of Barcelona," Ecological Economics, Elsevier, vol. 55(4), pages 499-514, December.
    5. Graham J. Treloar & Peter E.D. Love & Gary D. Holt, 2001. "Using national input/output data for embodied energy analysis of individual residential buildings," Construction Management and Economics, Taylor & Francis Journals, vol. 19(1), pages 49-61, January.
    6. Bastianoni, S. & Campbell, D.E. & Ridolfi, R. & Pulselli, F.M., 2009. "The solar transformity of petroleum fuels," Ecological Modelling, Elsevier, vol. 220(1), pages 40-50.
    7. Huang, Shu-Li & Kao, Wei-Chieh & Lee, Chun-Lin, 2007. "Energetic mechanisms and development of an urban landscape system," Ecological Modelling, Elsevier, vol. 201(3), pages 495-506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen Lehmann, 2015. "A New Urban Agenda: Introduction to the Special Issue on “Sustainable Urban Development”," Sustainability, MDPI, vol. 7(8), pages 1-7, July.
    2. Qing Huang & Xinqi Zheng & Yecui Hu, 2015. "Analysis of Land-Use Emergy Indicators Based on Urban Metabolism: A Case Study for Beijing," Sustainability, MDPI, vol. 7(6), pages 1-19, June.
    3. Ricardo Enrique Vega-Azamar & Rabindranarth Romero-López & Norma Angélica Oropeza-García & Mathias Glaus & Robert Hausler & Herlinda Del Socorro Silva-Poot, 2017. "Emergy Evaluation of Dwelling Operation in Five Housing Units of Montreal Island, Canada," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    4. Zhanqi Wang & Ji Chai & Bingqing Li, 2016. "The Impacts of Land Use Change on Residents’ Living Based on Urban Metabolism: A Case Study in Yangzhou City of Jiangsu Province, China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    5. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-Lopez & Mathias Glaus & Sara P. Ibarra-Zavaleta, 2018. "Carbon Dioxide Emissions, Energy Consumption and Economic Growth: A Comparative Empirical Study of Selected Developed and Developing Countries. “The Role of Exergy”," Energies, MDPI, vol. 11(10), pages 1-16, October.
    6. Li, Dezhi & Du, Bingzhen & Zhu, Jin, 2021. "Evaluating old community renewal based on emergy analysis: A case study of Nanjing," Ecological Modelling, Elsevier, vol. 449(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo Enrique Vega-Azamar & Rabindranarth Romero-López & Norma Angélica Oropeza-García & Mathias Glaus & Robert Hausler & Herlinda Del Socorro Silva-Poot, 2017. "Emergy Evaluation of Dwelling Operation in Five Housing Units of Montreal Island, Canada," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    2. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
    3. Lijie Gao & Shenghui Cui & Dewei Yang & Lina Tang & Jonathan Vause & Lishan Xiao & Xuanqi Li & Longyu Shi, 2016. "Sustainability and Chinese Urban Settlements: Extending the Metabolism Model of Emergy Evaluation," Sustainability, MDPI, vol. 8(5), pages 1-17, May.
    4. Su, Meirong & Fath, Brian D. & Yang, Zhifeng & Chen, Bin & Liu, Gengyuan, 2013. "Ecosystem health pattern analysis of urban clusters based on emergy synthesis: Results and implication for management," Energy Policy, Elsevier, vol. 59(C), pages 600-613.
    5. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    6. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    7. Jiang, M.M. & Chen, B., 2011. "Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy," Ecological Modelling, Elsevier, vol. 222(13), pages 2149-2165.
    8. Zhang, Zilong & Chen, Xingpeng & Heck, Peter & Xue, Bing & Liu, Ye, 2015. "Empirical study on the environmental pressure versus economic growth in China during 1991–2012," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 182-193.
    9. Liu, Jin’e & Lin, Bin-Le & Sagisaka, Masayuki, 2012. "Sustainability assessment of bioethanol and petroleum fuel production in Japan based on emergy analysis," Energy Policy, Elsevier, vol. 44(C), pages 23-33.
    10. Lulu Qu & Xueyi Shi & Chang Liu & Ye Yuan, 2017. "An Emergy-Based Hybrid Method for Assessing Sustainability of the Resource-Dependent Region," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
    11. Seghetta, Michele & Østergård, Hanne & Bastianoni, Simone, 2014. "Energy analysis of using macroalgae from eutrophic waters as a bioethanol feedstock," Ecological Modelling, Elsevier, vol. 288(C), pages 25-37.
    12. Rugani, B. & Pulselli, R.M. & Niccolucci, V. & Bastianoni, S., 2011. "Environmental performance of a XIV Century water management system: An emergy evaluation of cultural heritage," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 117-125.
    13. Bhagaban Behera, 2013. "Drug Trafficking as a Non-Traditional Security Threat to Central Asian States," Jadavpur Journal of International Relations, , vol. 17(2), pages 229-251, December.
    14. Lévay, Petra Zsuzsa & Vanhille, Josefine & Goedemé, Tim & Verbist, Gerlinde, 2021. "The association between the carbon footprint and the socio-economic characteristics of Belgian households," Ecological Economics, Elsevier, vol. 186(C).
    15. Shah, Syed Mahboob & Liu, Gengyuan & Yang, Qing & Casazza, Marco & Agostinho, Feni & Giannetti, Biagio F., 2021. "Sustainability assessment of agriculture production systems in Pakistan: A provincial-scale energy-based evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    16. Wang, Xueqi & Liu, Gengyuan & Coscieme, Luca & Giannetti, Biagio F. & Hao, Yan & Zhang, Yan & Brown, Mark T., 2019. "Study on the emergy-based thermodynamic geography of the Jing-Jin-Ji region: Combined multivariate statistical data with DMSP-OLS nighttime lights data," Ecological Modelling, Elsevier, vol. 397(C), pages 1-15.
    17. Modarres, Ali, 2013. "Commuting and energy consumption: toward an equitable transportation policy," Journal of Transport Geography, Elsevier, vol. 33(C), pages 240-249.
    18. Nielsen, S.N. & Müller, F., 2009. "Understanding the functional principles of nature—Proposing another type of ecosystem services," Ecological Modelling, Elsevier, vol. 220(16), pages 1913-1925.
    19. Salvati, Luca & Sateriano, Adele & Grigoriadis, Efstathios & Carlucci, Margherita, 2017. "New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation," Ecological Economics, Elsevier, vol. 131(C), pages 361-372.
    20. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:3:p:2454-2472:d:46206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.