IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v2y2010i3p844-858d7574.html
   My bibliography  Save this article

Carbon Efficient Building Solutions

Author

Listed:
  • Miimu Airaksinen

    (VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland)

  • Pellervo Matilainen

    (Skanska M&E Finland Oy, P.O. Box 114, FI-00101 Helsinki, Finland)

Abstract

Traditionally, the Finnish legislation have focused on energy use and especially on energy used for heating space in buildings. However, in many cases this does not lead to the optimal concept in respect to minimizing green house gases. This paper studies how CO 2 emission levels are affected by different measures to reduce energy use in buildings. This paper presents two real apartment buildings with different options of energy efficiency and power sources. The calculations clearly show that in the future electricity and domestic hot water use will have high importance in respect to energy efficiency, and therefore also CO 2 equivalent (eq) emissions. The importance increases when the energy efficiency of the building increases. There are big differences between average Finnish production and individual power plants; CO 2 eq emissions might nearly double depending on the energy source and the power plant type. Both a building with an efficient district heating as a power source, and a building with ground heat in addition to nuclear power electricity as a complimentary electricity source performed very similarly to each other in respect to CO 2 eq emissions. However, it is dangerous to conclude that it is not important which energy source is chosen. If hypothetically, the use of district heating would dramatically drop, the primary energy factor and CO 2 eq emissions from electricity would rise, which in turn would lead to the increase of the ground heat systems emissions. A problem in the yearly calculations is that the fact that it is very important, sometimes even crucial, when energy is needed, is always excluded.

Suggested Citation

  • Miimu Airaksinen & Pellervo Matilainen, 2010. "Carbon Efficient Building Solutions," Sustainability, MDPI, vol. 2(3), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:2:y:2010:i:3:p:844-858:d:7574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/2/3/844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/2/3/844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leth-Petersen, Soren & Togeby, Mikael, 2001. "Demand for space heating in apartment blocks: measuring effects of policy measures aiming at reducing energy consumption," Energy Economics, Elsevier, vol. 23(4), pages 387-403, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyoung Jae Jang & Tae Hyoung Kim & Chang U Chae, 2016. "CO 2 Emissions and Cost by Floor Types of Public Apartment Houses in South Korea," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    2. Marina Nikolić Topalović & Milenko Stanković & Goran Ćirović & Dragan Pamučar, 2018. "Comparison of the Applied Measures on the Simulated Scenarios for the Sustainable Building Construction through Carbon Footprint Emissions—Case Study of Building Construction in Serbia," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    3. Tae Hyoung Kim & Chang U Chae & Gil Hwan Kim & Hyoung Jae Jang, 2016. "Analysis of CO 2 Emission Characteristics of Concrete Used at Construction Sites," Sustainability, MDPI, vol. 8(4), pages 1-14, April.
    4. Yi-Kai Juan & Yu-Ching Cheng & Yeng-Horng Perng & Daniel Castro-Lacouture, 2016. "Optimal Decision Model for Sustainable Hospital Building Renovation—A Case Study of a Vacant School Building Converting into a Community Public Hospital," IJERPH, MDPI, vol. 13(7), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
    2. Meier, Helena & Rehdanz, Katrin, 2010. "Determinants of residential space heating expenditures in Great Britain," Energy Economics, Elsevier, vol. 32(5), pages 949-959, September.
    3. Chi, Fang'ai & Zhang, Jianxun & Li, Gaomei & Zhu, Zongzhou & Bart, Dewancker, 2019. "An investigation of the impact of Building Azimuth on energy consumption in sizhai traditional dwellings," Energy, Elsevier, vol. 180(C), pages 594-614.
    4. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    5. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    6. Chung, Mo & Park, Chuhwan & Lee, Sukgyu & Park, Hwa-Choon & Im, Yong-Hoon & Chang, Youngho, 2012. "A decision support assessment of cogeneration plant for a community energy system in Korea," Energy Policy, Elsevier, vol. 47(C), pages 365-383.
    7. Anna Risch & Claire Salmon, 2017. "What matters in residential energy consumption: evidence from France," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 40(1/2), pages 79-116.
    8. Ebru Ergöz Karahan & Özgür Göçer & Kenan Göçer & Didem Boyacıoğlu, 2021. "An Investigation of Occupant Energy-Saving Behavior in Vernacular Houses of Behramkale (Assos)," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    9. Rehdanz, Katrin, 2007. "Determinants of residential space heating expenditures in Germany," Energy Economics, Elsevier, vol. 29(2), pages 167-182, March.
    10. Biggar, Darryl & Söderberg, Magnus, 2020. "Empirical analysis of how political ideology and ownership influence price stability in the Swedish district heating market," Energy Policy, Elsevier, vol. 145(C).
    11. Gechert, Sebastian & Mey, Bianka & Prante, Franz & Schäfer, Teresa, 2025. "The Price Elasticity of Heating and Cooling Energy Demand," I4R Discussion Paper Series 265, The Institute for Replication (I4R).
    12. Kenichi Mizobuchi & Kenji Takeuchi, 2015. "Replacement or Additional Purchase: The Impact of Energy-Efficient Appliances on Household Electricity Saving," Discussion Papers 1520, Graduate School of Economics, Kobe University.
    13. Helena Meier & Tooraj Jamasb & Luis Orea, 2013. "Necessity or Luxury Good? Household Energy Spending and Income in Britain 1991-2007," The Energy Journal, , vol. 34(4), pages 109-128, October.
    14. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    15. Darryl Biggar & Matthieu Glachant & Magnus Söderberg, 2018. "Monopoly regulation when customers need to make sunk investments: evidence from the Swedish district heating sector," Journal of Regulatory Economics, Springer, vol. 54(1), pages 14-40, August.
    16. Marius Claudy & Claus Michelsen, 2016. "Housing Market Fundamentals, Housing Quality and Energy Consumption: Evidence from Germany," The Energy Journal, , vol. 37(4), pages 25-44, October.
    17. Dorothée CHARLIER & Mouez FODHA & Djamel KIRAT, 2021. "CO2 Emissions from the Residential Sector in Europe: Some Insights form a Country-Level Assessment," LEO Working Papers / DR LEO 2849, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    18. Michelsen, Claus & Rosenschon, Sebastian & Schulz, Christian, 2015. "Small might be beautiful, but bigger performs better: Scale economies in “green” refurbishments of apartment housing," Energy Economics, Elsevier, vol. 50(C), pages 240-250.
    19. Michelsen, Claus & El-Shagi, Makram & Rosenschon, Sebastian, 2016. "The diffusion of "green'' buildings in the housing market: empirics on the long run effects of energy efficiency regulation," VfS Annual Conference 2016 (Augsburg): Demographic Change 145534, Verein für Socialpolitik / German Economic Association.
    20. Seppo Junnila & Juudit Ottelin & Laura Leinikka, 2018. "Influence of Reduced Ownership on the Environmental Benefits of the Circular Economy," Sustainability, MDPI, vol. 10(11), pages 1-13, November.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:2:y:2010:i:3:p:844-858:d:7574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.