IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3580-d1635691.html
   My bibliography  Save this article

Machine Learning in Mode Choice Prediction as Part of MPOs’ Regional Travel Demand Models: Is It Time for Change?

Author

Listed:
  • Hannaneh Abdollahzadeh Kalantari

    (Department of City and Metropolitan Planning, College of Architecture + Planning, University of Utah, 375S 1530E, Salt Lake City, UT 84112, USA)

  • Sadegh Sabouri

    (Department of Urban Studies and Planning, Massachusetts Institute of Technology (MIT), MIT 9-216, 77 Massachusetts Avenue, Cambridge, MA 02139, USA)

  • Simon Brewer

    (Department of Geography, University of Utah, 375S 1530E, Salt Lake City, UT 84112, USA)

  • Reid Ewing

    (Department of City and Metropolitan Planning, College of Architecture + Planning, University of Utah, 375S 1530E, Salt Lake City, UT 84112, USA)

  • Guang Tian

    (Department of Planning and Urban Studies, University of New Orleans, 378 Milneburg Hall, 2000 Lakeshore Drive, New Orleans, LA 70148, USA)

Abstract

This study aims to improve the predictive accuracy of metropolitan planning organizations’ (MPOs’) travel demand models (TDM) by unraveling the factors influencing transportation mode choices. By exploring the interplay between trip characteristics, socioeconomics, built environment features, and regional conditions, we aim to address existing gaps in MPOs’ TDMs which revolve around the need to also integrate non-motorized modes and a more comprehensive array of features. Additionally, our objective is to develop a more robust predictive model compared to the current nested logit (NL) and multinomial logit (MNL) models commonly employed by MPOs. We apply a one-vs-rest random forest (RF) model to predict mode choices (Home-based-Work, Home-Based-Other, and non-home-based) for over 800,000 trips by 80,000 households across 29 US regions. Validation results demonstrate the RF model’s superior performance compared to conventional NL/MNL models. Key findings highlight that increased travel time and distance are associated with more auto trips, while household vehicle ownership significantly affects car and transit choices. Built environment features, such as activity density, transit density, and intersection density, also play crucial roles in mode preferences. This study offers a more robust predictive framework that can be directly applied in MPO TDMs, contributing to more accurate and inclusive transportation planning.

Suggested Citation

  • Hannaneh Abdollahzadeh Kalantari & Sadegh Sabouri & Simon Brewer & Reid Ewing & Guang Tian, 2025. "Machine Learning in Mode Choice Prediction as Part of MPOs’ Regional Travel Demand Models: Is It Time for Change?," Sustainability, MDPI, vol. 17(8), pages 1-29, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3580-:d:1635691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cynthia Chen & Hongmian Gong & Robert Paaswell, 2008. "Role of the built environment on mode choice decisions: additional evidence on the impact of density," Transportation, Springer, vol. 35(3), pages 285-299, May.
    2. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    3. Handy, Susan & Cao, Xinyu & Mokhtarian, Patricia L., 2005. "Correlation or causality between the built environment and travel behavior? Evidence from Northern California," University of California Transportation Center, Working Papers qt5b76c5kg, University of California Transportation Center.
    4. Lawrence Frank & Mark Bradley & Sarah Kavage & James Chapman & T. Lawton, 2008. "Urban form, travel time, and cost relationships with tour complexity and mode choice," Transportation, Springer, vol. 35(1), pages 37-54, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae-Hong Kwon & Gi-Hyoug Cho, 2023. "The Long-Lasting Impact of Past Mobility Dependence on Travel Mode Share in a New Neighborhood: The Case of the Seoul Metropolitan Area, South Korea," Land, MDPI, vol. 12(10), pages 1-16, October.
    2. Tufayel Chowdhury & Darren M. Scott, 2020. "Role of the built environment on trip-chaining behavior: an investigation of workers and non-workers in Halifax, Nova Scotia," Transportation, Springer, vol. 47(2), pages 737-761, April.
    3. Altieri, Marcelo & Silva, Cecília & Terabe, Shintaro, 2020. "Give public transit a chance: A comparative analysis of competitive travel time in public transit modal share," Journal of Transport Geography, Elsevier, vol. 87(C).
    4. Chowdhury, Tufayel & Scott, Darren M., 2020. "An analysis of the built environment and auto travel in Halifax, Canada," Transport Policy, Elsevier, vol. 94(C), pages 23-33.
    5. Jinhyun Hong & Qing Shen & Lei Zhang, 2014. "How do built-environment factors affect travel behavior? A spatial analysis at different geographic scales," Transportation, Springer, vol. 41(3), pages 419-440, May.
    6. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    7. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    8. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    9. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    10. Wang, Xiaoquan & Yin, Chaoying & Zhang, Junyi & Shao, Chunfu & Wang, Shengyou, 2021. "Nonlinear effects of residential and workplace built environment on car dependence," Journal of Transport Geography, Elsevier, vol. 96(C).
    11. Xinyu (Jason) Cao, 2009. "Disentangling the influence of neighborhood type and self-selection on driving behavior: an application of sample selection model," Transportation, Springer, vol. 36(2), pages 207-222, March.
    12. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    13. João De Abreu e Silva, 2018. "The Effects of Land-Use Patterns on Home-Based Tour Complexity and Total Distances Traveled: A Path Analysis," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    14. Van Acker, Veronique & Witlox, Frank, 2010. "Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship," Journal of Transport Geography, Elsevier, vol. 18(1), pages 65-74.
    15. Arefeh Nasri & Lei Zhang, 2019. "How Urban Form Characteristics at Both Trip Ends Influence Mode Choice: Evidence from TOD vs. Non-TOD Zones of the Washington, D.C. Metropolitan Area," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    16. Ettema, Dick & Nieuwenhuis, Roy, 2017. "Residential self-selection and travel behaviour: What are the effects of attitudes, reasons for location choice and the built environment?," Journal of Transport Geography, Elsevier, vol. 59(C), pages 146-155.
    17. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    18. De Vos, Jonas & Derudder, Ben & Van Acker, Veronique & Witlox, Frank, 2012. "Reducing car use: changing attitudes or relocating? The influence of residential dissonance on travel behavior," Journal of Transport Geography, Elsevier, vol. 22(C), pages 1-9.
    19. He, Brian Y. & Zhou, Jinkai & Ma, Ziyi & Chow, Joseph Y.J. & Ozbay, Kaan, 2020. "Evaluation of city-scale built environment policies in New York City with an emerging-mobility-accessible synthetic population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 444-467.
    20. Shen, Qing & Chen, Peng & Pan, Haixiao, 2016. "Factors affecting car ownership and mode choice in rail transit-supported suburbs of a large Chinese city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 31-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3580-:d:1635691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.