IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p3198-d1627733.html
   My bibliography  Save this article

Environmental Assessment for Sustainable Educational Spaces: Optimizing Classroom Proportions in Taif City, KSA

Author

Listed:
  • Amal K. M. Shamseldin

    (Department of Civil Engineering, Faculty of Engineering, Taif University, Taif 21944, Saudi Arabia)

Abstract

Sustainable development in educational environments requires a holistic approach to architectural design, balancing multiple environmental functions to optimize student well-being and energy efficiency. According to architectural standards, rectangular classrooms typically have a shallow proportion, meaning the external facade is longer than the internal sides. While this design ensures adequate natural lighting, essential for classroom visual functions, it may not fully align with the sustainability goals in regions with diverse environmental characteristics. This diversity can lead to shortcomings in other aspects of human comfort or environmental performance, as optimizing one function may negatively impact others, while the environmental efficiency of architectural spaces should not be judged solely on a single comfort criterion. A holistic study should evaluate common architectural shapes and proportions to ensure they align with the Green Architectural principles for specific locations. This manuscript compares eight rectangular classrooms with different external-to-internal wall proportions and window-to-wall ratios (WWR) to determine their suitability for Taif City, KSA schools. The case studies include variations in window sizes (10.5 m 2 and 14 m 2 ) and orientations (North and South), providing a comprehensive evaluation of their impact on human comfort. Simulation results reveal that the common classroom proportion did not yield the highest green credits, suggesting it may not be optimal for all regions, including Taif City. The findings emphasize the need to reconsider standard classroom dimensions to better align with local environmental conditions and Green Architecture principles, contributing to the broader goals of sustainability and sustainable development in educational infrastructure.

Suggested Citation

  • Amal K. M. Shamseldin, 2025. "Environmental Assessment for Sustainable Educational Spaces: Optimizing Classroom Proportions in Taif City, KSA," Sustainability, MDPI, vol. 17(7), pages 1-46, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3198-:d:1627733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/3198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/3198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Balázs Cakó & Erzsébet Szeréna Zoltán & János Girán & Gabriella Medvegy & Mária Eördöghné Miklós & Árpád Nyers & Anett Tímea Grozdics & Zsolt Kisander & Viktor Bagdán & Ágnes Borsos, 2021. "An Efficient Method to Compute Thermal Parameters of the Comfort Map Using a Decreased Number of Measurements," Energies, MDPI, vol. 14(18), pages 1-14, September.
    2. Vicente López-Chao & Antonio Amado Lorenzo & Jose Luis Saorín & Jorge De La Torre-Cantero & Dámari Melián-Díaz, 2020. "Classroom Indoor Environment Assessment through Architectural Analysis for the Design of Efficient Schools," Sustainability, MDPI, vol. 12(5), pages 1-12, March.
    3. Amal Shamseldin & Ashraf Balabel & Mamdooh Alwetaishi & Ahmed Abdelhafiz & Usama Issa & Ibrahim Sharaky & Mohamed Al-Surf & Mosleh Al-Harthi, 2020. "Adjustment of the Indoor Environmental Quality Assessment Field for Taif City-Saudi Arabia," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    4. Zhang, Fan & de Dear, Richard & Hancock, Peter, 2019. "Effects of moderate thermal environments on cognitive performance: A multidisciplinary review," Applied Energy, Elsevier, vol. 236(C), pages 760-777.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuga Raju Gunda & Suprakash Gupta & Lalit Kumar Singh, 2023. "Assessing human performance and human reliability: a review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(3), pages 817-828, June.
    2. Li, Han & Hu, Haiyu & Wu, Zhiyao & Kong, Xiangfei & Fan, Man, 2025. "Modified predicted mean vote models for human thermal comfort: An ASHRAE database-based evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    3. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    4. Cleo Valentine, 2023. "Architectural Allostatic Overloading: Exploring a Connection between Architectural Form and Allostatic Overloading," IJERPH, MDPI, vol. 20(9), pages 1-14, April.
    5. Vicente López-Chao & Vicente López-Pena, 2021. "Purpose Adequacy as a Basis for Sustainable Building Design: A Post-Occupancy Evaluation of Higher Education Classrooms," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    6. Tullio De Rubeis & Annamaria Ciccozzi & Mattia Ragnoli & Vincenzo Stornelli & Stefano Brusaporci & Alessandra Tata & Dario Ambrosini, 2024. "A Workflow for a Building Information Modeling-Based Thermo-Hygrometric Digital Twin: An Experimentation in an Existing Building," Sustainability, MDPI, vol. 16(23), pages 1-30, November.
    7. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    8. Jarvinen, J. & Goldsworthy, M. & White, S. & Pudney, P. & Belusko, M. & Bruno, F., 2021. "Evaluating the utility of passive thermal storage as an energy storage system on the Australian energy market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Katarzyna Ratajczak & Łukasz Amanowicz & Katarzyna Pałaszyńska & Filip Pawlak & Joanna Sinacka, 2023. "Recent Achievements in Research on Thermal Comfort and Ventilation in the Aspect of Providing People with Appropriate Conditions in Different Types of Buildings—Semi-Systematic Review," Energies, MDPI, vol. 16(17), pages 1-55, August.
    10. Constanța Rînjea & Oana Roxana Chivu & Doru-Costin Darabont & Anamaria Ioana Feier & Claudia Borda & Marilena Gheorghe & Dan Florin Nitoi, 2022. "Influence of the Thermal Environment on Occupational Health and Safety in Automotive Industry: A Case Study," IJERPH, MDPI, vol. 19(14), pages 1-13, July.
    11. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2021. "Assessing the Energy, Indoor Air Quality, and Moisture Performance for a Three-Story Building Using an Integrated Model, Part Two: Integrating the Indoor Air Quality, Moisture, and Thermal Comfort," Energies, MDPI, vol. 14(16), pages 1-40, August.
    12. Balázs András-Tövissi & László Kajtár & Árpád Nyers, 2021. "The Effect of Ceiling Heating and Mechanical Ventilation on Thermal Comfort," Energies, MDPI, vol. 14(12), pages 1-15, June.
    13. Pierfrancesco Fiore & Giuseppe Donnarumma & Carmelo Falce & Emanuela D’Andria & Claudia Sicignano, 2020. "An AHP-Based Methodology for Decision Support in Integrated Interventions in School Buildings," Sustainability, MDPI, vol. 12(23), pages 1-20, December.
    14. Abbas A. Gillani & Sana Khan & Sadia Nasir & Salwa Niaz, 2022. "The effectiveness of installing solar panels at schools in Pakistan to increase enrolment," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(3), pages 505-514, September.
    15. Zhifeng Shen & Xirui Yang & Chunlu Liu & Junjie Li, 2021. "Assessment of Indoor Environmental Quality in Budget Hotels Using Text-Mining Method: Case Study of Top Five Brands in China," Sustainability, MDPI, vol. 13(8), pages 1-24, April.
    16. Vaughan, Arabella C. & Birney, Damian P., 2024. "Ecological cognitive assessment has incremental validity for predicting academic performance over and above single occasion cognitive assessments," Intelligence, Elsevier, vol. 107(C).
    17. Sergio Alonso Martínez-Ramos & Juvenal Rodríguez-Reséndiz & Avatar Flores Gutiérrez & P. Y. Sevilla-Camacho & Jorge D. Mendiola-Santíbañez, 2021. "The Learning Space as Support to Sustainable Development: A Revision of Uses and Design Processes," Sustainability, MDPI, vol. 13(21), pages 1-13, October.
    18. David Baeza Moyano & Roberto Alonso González-Lezcano, 2021. "Pandemic of Childhood Myopia. Could New Indoor LED Lighting Be Part of the Solution?," Energies, MDPI, vol. 14(13), pages 1-14, June.
    19. Samuel Domínguez-Amarillo & Jesica Fernández-Agüera & Maella Minaksi González & Teresa Cuerdo-Vilches, 2020. "Overheating in Schools: Factors Determining Children’s Perceptions of Overall Comfort Indoors," Sustainability, MDPI, vol. 12(14), pages 1-21, July.
    20. Cleo Valentine, 2023. "Health Implications of Virtual Architecture: An Interdisciplinary Exploration of the Transferability of Findings from Neuroarchitecture," IJERPH, MDPI, vol. 20(3), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3198-:d:1627733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.