IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4915-d612559.html
   My bibliography  Save this article

Assessing the Energy, Indoor Air Quality, and Moisture Performance for a Three-Story Building Using an Integrated Model, Part Two: Integrating the Indoor Air Quality, Moisture, and Thermal Comfort

Author

Listed:
  • Seyedmohammadreza Heibati

    (Department of Construction Engineering, École de Technologie Supérieure (ÉTS), University of Québec, Montréal, QC H3C 1K3, Canada)

  • Wahid Maref

    (Department of Construction Engineering, École de Technologie Supérieure (ÉTS), University of Québec, Montréal, QC H3C 1K3, Canada)

  • Hamed H. Saber

    (Prince Saud Bin Thuniyan Research Center, Mechanical Engineering Department, Jubail University College, Al Jubail 35716, Saudi Arabia)

Abstract

In this paper, an integrated model that coupled CONTAM and WUFI was developed to assess the indoor air quality (IAQ), moisture, and thermal comfort performance. The coupling method of CONTAM and WUFI is described based on the exchange of airflow rate control variables as infiltration, natural and mechanical ventilation parameters between heat and moisture flow balance equations in WUFI and contaminant flow balances equations in CONTAM. To evaluate the predictions of the integrated model compared to single models of CONTAM and WUFI, four scenarios were used. These scenarios are airtight-fan off, airtight-fan on, leaky-fan off, and leaky-fan on, and were defined for a three-story house subjected to three different climate conditions of Montreal, Vancouver, and Miami. The measures of the simulated indoor CO 2 , PM 2.5 , and VOCs obtained by CONTAM; the simulated indoor relative humidity (RH), predicted percentage of dissatisfied (PPD), and predicted mean vote (PMV) obtained by WUFI; and those obtained by the integrated model are compared separately for all scenarios in Montreal, Vancouver, and Miami. Finally, the optimal scenarios are selected. The simulated results of the optimal scenarios with the integrated model method (−28.88% to 46.39%) are different from those obtained with the single models. This is due to the inability of the single models to correct the airflow variables.

Suggested Citation

  • Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2021. "Assessing the Energy, Indoor Air Quality, and Moisture Performance for a Three-Story Building Using an Integrated Model, Part Two: Integrating the Indoor Air Quality, Moisture, and Thermal Comfort," Energies, MDPI, vol. 14(16), pages 1-40, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4915-:d:612559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2019. "Assessing the Energy and Indoor Air Quality Performance for a Three-Story Building Using an Integrated Model, Part One: The Need for Integration," Energies, MDPI, vol. 12(24), pages 1-18, December.
    2. Zhang, Fan & de Dear, Richard & Hancock, Peter, 2019. "Effects of moderate thermal environments on cognitive performance: A multidisciplinary review," Applied Energy, Elsevier, vol. 236(C), pages 760-777.
    3. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2021. "Assessing the Energy, Indoor Air Quality, and Moisture Performance for a Three-Story Building Using an Integrated Model, Part Three: Development of Integrated Model and Applications," Energies, MDPI, vol. 14(18), pages 1-31, September.
    4. Mehrdad Rabani & Habtamu Bayera Madessa & Natasa Nord, 2021. "Building Retrofitting through Coupling of Building Energy Simulation-Optimization Tool with CFD and Daylight Programs," Energies, MDPI, vol. 14(8), pages 1-23, April.
    5. Jerzy Sowa & Maciej Mijakowski, 2020. "Humidity-Sensitive, Demand-Controlled Ventilation Applied to Multiunit Residential Building—Performance and Energy Consumption in Dfb Continental Climate," Energies, MDPI, vol. 13(24), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenhui Ji & Yanping Yuan, 2022. "Development of Assessing the Thermal Comfort and Energy Performance for Buildings," Energies, MDPI, vol. 15(16), pages 1-2, August.
    2. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2021. "Assessing the Energy, Indoor Air Quality, and Moisture Performance for a Three-Story Building Using an Integrated Model, Part Three: Development of Integrated Model and Applications," Energies, MDPI, vol. 14(18), pages 1-31, September.
    3. Jeeheon Kim & Yongsug Hong & Namchul Seong & Daeung Danny Kim, 2022. "Assessment of ANN Algorithms for the Concentration Prediction of Indoor Air Pollutants in Child Daycare Centers," Energies, MDPI, vol. 15(7), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Bomberg & Anna Romanska-Zapala & David Yarbrough, 2021. "Towards a New Paradigm for Building Science (Building Physics)," World, MDPI, vol. 2(2), pages 1-22, April.
    2. Wenhui Ji & Yanping Yuan, 2022. "Development of Assessing the Thermal Comfort and Energy Performance for Buildings," Energies, MDPI, vol. 15(16), pages 1-2, August.
    3. Yuga Raju Gunda & Suprakash Gupta & Lalit Kumar Singh, 2023. "Assessing human performance and human reliability: a review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(3), pages 817-828, June.
    4. Valdas Paukštys & Gintaris Cinelis & Jūratė Mockienė & Mindaugas Daukšys, 2021. "Airtightness and Heat Energy Loss of Mid-Size Terraced Houses Built of Different Construction Materials," Energies, MDPI, vol. 14(19), pages 1-23, October.
    5. Konstantinos Sofias & Zoe Kanetaki & Constantinos Stergiou & Sébastien Jacques, 2023. "Combining CAD Modeling and Simulation of Energy Performance Data for the Retrofit of Public Buildings," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    6. Tatsuhiro Yamamoto & Akihito Ozaki & Myonghyang Lee, 2021. "Optimal Air Conditioner Placement Using a Simple Thermal Environment Analysis Method for Continuous Large Spaces with Predominant Advection," Energies, MDPI, vol. 14(15), pages 1-24, July.
    7. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    8. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    9. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    10. Konrad Nering & Krzysztof Nering, 2021. "Validation of Modified Algebraic Model during Transitional Flow in HVAC Duct," Energies, MDPI, vol. 14(13), pages 1-20, July.
    11. Cleo Valentine, 2023. "Architectural Allostatic Overloading: Exploring a Connection between Architectural Form and Allostatic Overloading," IJERPH, MDPI, vol. 20(9), pages 1-14, April.
    12. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.
    13. Mark Bomberg & Anna Romanska-Zapala & Paulo Santos, 2023. "The 4th Industrial Revolution Brings a Change in the Design Paradigm for New and Retrofitted Buildings," Energies, MDPI, vol. 16(4), pages 1-22, February.
    14. Sam Hamels, 2021. "CO 2 Intensities and Primary Energy Factors in the Future European Electricity System," Energies, MDPI, vol. 14(8), pages 1-30, April.
    15. Balázs András-Tövissi & László Kajtár & Árpád Nyers, 2021. "The Effect of Ceiling Heating and Mechanical Ventilation on Thermal Comfort," Energies, MDPI, vol. 14(12), pages 1-15, June.
    16. Silvia Soutullo & Laura Aelenei & Per Sieverts Nielsen & Jose Antonio Ferrer & Helder Gonçalves, 2020. "Testing Platforms as Drivers for Positive-Energy Living Laboratories," Energies, MDPI, vol. 13(21), pages 1-21, October.
    17. Jeeheon Kim & Yongsug Hong & Namchul Seong & Daeung Danny Kim, 2022. "Assessment of ANN Algorithms for the Concentration Prediction of Indoor Air Pollutants in Child Daycare Centers," Energies, MDPI, vol. 15(7), pages 1-17, April.
    18. Piotr Michalak, 2022. "Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building," Energies, MDPI, vol. 15(10), pages 1-19, May.
    19. Piotr Michalak, 2021. "Annual Energy Performance of an Air Handling Unit with a Cross-Flow Heat Exchanger," Energies, MDPI, vol. 14(6), pages 1-16, March.
    20. Simon Li, 2023. "Review of Engineering Controls for Indoor Air Quality: A Systems Design Perspective," Sustainability, MDPI, vol. 15(19), pages 1-46, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4915-:d:612559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.