IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p3196-d1627697.html
   My bibliography  Save this article

Technologies Applied to Artificial Lighting in Indoor Agriculture: A Review

Author

Listed:
  • Luisa F. Lozano-Castellanos

    (TADRUS Research Group, Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, 34004 Palencia, Spain
    Research Group on Biodiversity and Dynamics of Tropical Ecosystems—GIBDET, Faculty of Engineering Forestry, University of Tolima, Ibagué 730006, Colombia)

  • Luis Manuel Navas-Gracia

    (TADRUS Research Group, Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, 34004 Palencia, Spain)

  • Isabel C. Lozano-Castellanos

    (Faculty of Science and Engineering, Curtin University, Perth 6102, Australia)

  • Adriana Correa-Guimaraes

    (TADRUS Research Group, Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, 34004 Palencia, Spain)

Abstract

Artificial lighting is essential in indoor agriculture, directly influencing plant growth and productivity. Optimizing its use requires advanced technologies that improve light management and adaptation to crop needs. This systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, examines recent advancements in artificial lighting technologies, focusing on their applications, challenges, and future directions. A systematic search in Web of Science (WOS) and Scopus identified 70 relevant studies published between 2019 and 2024. The analysis highlights five major technology groups: (i) lighting control systems, with Light-Emitting Diodes (LEDs) as the dominant solution; (ii) Internet of Things (IoT) incorporating sensors, deep neural networks, Artificial Intelligence (AI), digital twins, and machine learning (ML) for real-time optimization, as well as communication technologies, enabling remote control and data-driven adjustments; (iii) simulation and modeling tools, refining lighting strategies to enhance plant responses and system performance; and (iv) complementary energy sources, improving lighting sustainability. IoT-driven automation has significantly improved artificial lighting efficiency, optimizing adaptation and plant-specific management. However, challenges such as system complexity, high energy demands, and scalability limitations persist. Future research should focus on refining IoT-driven adaptive lighting, improving sensor calibration for precise real-time adjustments, and developing cost-effective modular systems to enhance widespread adoption and optimize resource use.

Suggested Citation

  • Luisa F. Lozano-Castellanos & Luis Manuel Navas-Gracia & Isabel C. Lozano-Castellanos & Adriana Correa-Guimaraes, 2025. "Technologies Applied to Artificial Lighting in Indoor Agriculture: A Review," Sustainability, MDPI, vol. 17(7), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3196-:d:1627697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/3196/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/3196/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chiara Bersani & Carmelina Ruggiero & Roberto Sacile & Abdellatif Soussi & Enrico Zero, 2022. "Internet of Things Approaches for Monitoring and Control of Smart Greenhouses in Industry 4.0," Energies, MDPI, vol. 15(10), pages 1-30, May.
    2. Ahmad Nizar Harun & Robiah Ahmad & Norliza Mohamed & Abd Rahman Abdul Rahim & Hazilah Mad Kaidi, 2021. "Morphological and Physiological Responses of Brassica chinensis on Different Far-Red (FR) Light Treatments Using Internet-of-Things (IoT) Technology," Agriculture, MDPI, vol. 11(8), pages 1-16, July.
    3. Ajwal Dsouza & Gordon W. Price & Mike Dixon & Thomas Graham, 2021. "A Conceptual Framework for Incorporation of Composting in Closed-Loop Urban Controlled Environment Agriculture," Sustainability, MDPI, vol. 13(5), pages 1-27, February.
    4. Francisco Tomatis & Monika Egerer & Adriana Correa-Guimaraes & Luis Manuel Navas-Gracia, 2023. "Urban Gardening in a Changing Climate: A Review of Effects, Responses and Adaptation Capacities for Cities," Agriculture, MDPI, vol. 13(2), pages 1-16, February.
    5. Ki-Youn Kim & Jun-Ho Huh & Han-Jong Ko, 2021. "Research on Crop Growing Factory: Focusing on Lighting and Environmental Control with Technological Proposal," Energies, MDPI, vol. 14(9), pages 1-25, May.
    6. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    7. Kathrin Specht & Rosemarie Siebert & Ina Hartmann & Ulf Freisinger & Magdalena Sawicka & Armin Werner & Susanne Thomaier & Dietrich Henckel & Heike Walk & Axel Dierich, 2014. "Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(1), pages 33-51, March.
    8. Dimitra I. Pomoni & Maria K. Koukou & Michail Gr. Vrachopoulos & Labros Vasiliadis, 2023. "A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use," Energies, MDPI, vol. 16(4), pages 1-26, February.
    9. Engler, Nicholas & Krarti, Moncef, 2021. "Review of energy efficiency in controlled environment agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Filippos Bantis & Ioanna Chatzigeorgiou & Michail Sismanis & Georgios K. Ntinas & Athanasios Koukounaras, 2024. "Vegetable Production in PFALs: Control of Micro-Environmental Factors, Principal Components and Automated Systems," Agriculture, MDPI, vol. 14(4), pages 1-13, April.
    11. Rui de Sousa & Luís Bragança & Manuela V. da Silva & Rui S. Oliveira, 2024. "Challenges and Solutions for Sustainable Food Systems: The Potential of Home Hydroponics," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    12. Elena Butsenko & Aleksandr Kurdyumov & Aleksandr Semin, 2020. "Intelligent Automation System on a Single-Board Computer Platform for the Agro-Industrial Sector," Mathematics, MDPI, vol. 8(9), pages 1-15, September.
    13. Noah James Langenfeld & Daniel Fernandez Pinto & James E. Faust & Royal Heins & Bruce Bugbee, 2022. "Principles of Nutrient and Water Management for Indoor Agriculture," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitra I. Pomoni & Maria K. Koukou & Michail Gr. Vrachopoulos & Labros Vasiliadis, 2023. "A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use," Energies, MDPI, vol. 16(4), pages 1-26, February.
    2. Leena Erälinna & Barbara Szymoniuk, 2021. "Managing a Circular Food System in Sustainable Urban Farming. Experimental Research at the Turku University Campus (Finland)," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    3. Montero, J.I. & Baeza, E. & Heuvelink, E. & Rieradevall, J. & Muñoz, P. & Ercilla, M. & Stanghellini, C., 2017. "Productivity of a building-integrated roof top greenhouse in a Mediterranean climate," Agricultural Systems, Elsevier, vol. 158(C), pages 14-22.
    4. Devi Buehler & Ranka Junge, 2016. "Global Trends and Current Status of Commercial Urban Rooftop Farming," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    5. Michael Martin & Elvira Molin, 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    6. Muhammad Mumtaz Khan & Muhammad Tahir Akram & Rhonda Janke & Rashad Waseem Khan Qadri & Abdullah Mohammed Al-Sadi & Aitazaz A. Farooque, 2020. "Urban Horticulture for Food Secure Cities through and beyond COVID-19," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    7. Mireia Ercilla-Montserrat & David Sanjuan-Delmás & Esther Sanyé-Mengual & Laura Calvet-Mir & Karla Banderas & Joan Rieradevall & Xavier Gabarrell, 2019. "Analysis of the consumer’s perception of urban food products from a soilless system in rooftop greenhouses: a case study from the Mediterranean area of Barcelona (Spain)," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 36(3), pages 375-393, September.
    8. Kathrin Specht & Rosemarie Siebert & Susanne Thomaier, 2016. "Perception and acceptance of agricultural production in and on urban buildings (ZFarming): a qualitative study from Berlin, Germany," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 33(4), pages 753-769, December.
    9. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    10. Kosorić, Vesna & Huang, Huajing & Tablada, Abel & Lau, Siu-Kit & Tan, Hugh T.W., 2019. "Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 197-214.
    11. Rui de Sousa & Luís Bragança & Manuela V. da Silva & Rui S. Oliveira, 2024. "Challenges and Solutions for Sustainable Food Systems: The Potential of Home Hydroponics," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    12. Jeroen Degerickx & Martin Hermy & Ben Somers, 2020. "Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data," Sustainability, MDPI, vol. 12(5), pages 1-35, March.
    13. Garrett M. Broad & Wythe Marschall & Maya Ezzeddine, 2022. "Perceptions of high-tech controlled environment agriculture among local food consumers: using interviews to explore sense-making and connections to good food," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 417-433, March.
    14. Saskia Van Broekhoven & Anne Lorène Vernay, 2018. "Integrating Functions for a Sustainable Urban System: A Review of Multifunctional Land Use and Circular Urban Metabolism," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    15. Ankita Chopra & Prakash Rao & Om Prakash, 2024. "Biochar-enhanced soilless farming: a sustainable solution for modern agriculture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(7), pages 1-21, October.
    16. Reyhaneh Hashemi Sigari & Thomas Panagopoulos, 2024. "A Multicriteria Decision-Making Approach for Urban Water Features: Ecological Landscape Architecture Evaluation," Land, MDPI, vol. 13(11), pages 1-20, October.
    17. Christina-Ioanna Papadopoulou & Angeliki Foutri & George Martinidis & Theodora Kalea & Yannis Fallas, 2025. "Developing Blueprints for Robust Regional Bioeconomy Strategies: The Case of Western Macedonia," Land, MDPI, vol. 14(2), pages 1-20, February.
    18. Heino Pesch & Louis Louw, 2023. "Exploring the Industrial Symbiosis Potential of Plant Factories during the Initial Establishment Phase," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    19. Ehsan Daneshyar, 2024. "Residential Rooftop Urban Agriculture: Architectural Design Recommendations," Sustainability, MDPI, vol. 16(5), pages 1-34, February.
    20. Shaival Nagarsheth & Kodjo Agbossou & Nilson Henao & Mathieu Bendouma, 2025. "The Advancements in Agricultural Greenhouse Technologies: An Energy Management Perspective," Sustainability, MDPI, vol. 17(8), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3196-:d:1627697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.