IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p3019-d1622960.html
   My bibliography  Save this article

Structural Characteristics of Small Ruminant Production in Muş, Türkiye: A Model for Organic Livestock on the Basis of Sustainability

Author

Listed:
  • Hülya Hanoğlu Oral

    (Department of Animal Sciences and Technologies, Faculty of Applied Sciences, Muş Alparslan University, Muş 49250, Türkiye)

  • Ferit Yıldız

    (Muş Directorate of Provincial Agriculture and Forestry, Republic of Turkey Ministry of Agriculture and Forestry, Muş 49100, Türkiye)

Abstract

Small ruminant farming enterprises in eastern Türkiye have the potential to establish a sustainable model for organic livestock production but face structural challenges. This study aimed to develop an organic livestock model based on sustainability by examining the socio-demographic characteristics, management practices, and perceptions regarding animal health and the welfare of small ruminant farmers in the eastern province of Muş, Türkiye. A face-to-face survey was conducted with 364 randomly selected farmers, assessing parameters such as animal genotype, pasture conditions, forage cultivation, chemical fertilizer and pesticide use, nutrition, reproduction, health services, and shelter conditions. Results showed that small ruminants in Muş were well adapted to local conditions and were disease-resistant. They were fed with forage grown without chemicals and had unlimited outdoor and pasture access. The production process avoided hormones, antibiotics, and growth promoters, with reproduction occurring through natural mating. Challenges included inadequate pasture productivity, insufficient animal welfare conditions, low record-keeping rates, lack of effective organization, and insufficient awareness of organic practices among farmers. Notably, 81.9% of farmers described their pasture quality as moderate or poor, while 63.2% stated that they had no knowledge of organic practices. In conclusion, the Muş model offered concepts that could aid the transition to organic livestock farming and support sustainable extensive small ruminant farming globally. Farmers should be educated, informed, and organized, with support throughout the supply and marketing processes.

Suggested Citation

  • Hülya Hanoğlu Oral & Ferit Yıldız, 2025. "Structural Characteristics of Small Ruminant Production in Muş, Türkiye: A Model for Organic Livestock on the Basis of Sustainability," Sustainability, MDPI, vol. 17(7), pages 1-25, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3019-:d:1622960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/3019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/3019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antoinette Simpah Anim-Jnr & Prince Sasu & Christine Bosch & Faith Philemon Mabiki & Yaw Oppong Frimpong & Mohammad Naushad Emmambux & Henry Michael Rivers Greathead, 2023. "Sustainable Small Ruminant Production in Low- and Middle-Income African Countries: Harnessing the Potential of Agroecology," Sustainability, MDPI, vol. 15(21), pages 1-30, October.
    2. Silvia-Elena Cristache & Mariana Vuță & Erika Marin & Sorin-Iulian Cioacă & Mihai Vuţă, 2018. "Organic versus Conventional Farming—A Paradigm for the Sustainable Development of the European Countries," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    3. Martin, Guillaume & Barth, Kerstin & Benoit, Marc & Brock, Christopher & Destruel, Marie & Dumont, Bertrand & Grillot, Myriam & Hübner, Severin & Magne, Marie-Angélina & Moerman, Marie & Mosnier, Clai, 2020. "Potential of multi-species livestock farming to improve the sustainability of livestock farms: A review," Agricultural Systems, Elsevier, vol. 181(C).
    4. Emile A. Frison & Jeremy Cherfas & Toby Hodgkin, 2011. "Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security," Sustainability, MDPI, vol. 3(1), pages 1-16, January.
    5. Alfredo J. Escribano, 2018. "Organic Feed: A Bottleneck for the Development of the Livestock Sector and Its Transition to Sustainability?," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akila Wijerathna-Yapa & Ranjith Pathirana, 2022. "Sustainable Agro-Food Systems for Addressing Climate Change and Food Security," Agriculture, MDPI, vol. 12(10), pages 1-26, September.
    2. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    3. Lucas David & Michel Streith & Audrey Michaud & Michaël Dambrun, 2024. "Organic and Conventional Farmers’ Mental Health: A Preliminary Study on the Role of Social Psychological Mediators," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    4. Sylvain, Dernat & Bertrand, Dumont & Dominique, Vollet, 2023. "La Grange®: A generic game to reveal trade-offs and synergies among stakeholders in livestock farming areas," Agricultural Systems, Elsevier, vol. 209(C).
    5. Lipy Adhikari & Sabarnee Tuladhar & Abid Hussain & Kamal Aryal, 2019. "Are Traditional Food Crops Really ‘Future Smart Foods?’ A Sustainability Perspective," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    6. Silvia Scaramuzzi & Sara Gabellini & Giovanni Belletti & Andrea Marescotti, 2021. "Agrobiodiversity-Oriented Food Systems between Public Policies and Private Action: A Socio-Ecological Model for Sustainable Territorial Development," Sustainability, MDPI, vol. 13(21), pages 1-32, November.
    7. Johannes Kotschi & Bernd Horneburg, 2018. "The Open Source Seed Licence: A novel approach to safeguarding access to plant germplasm," PLOS Biology, Public Library of Science, vol. 16(10), pages 1-7, October.
    8. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    9. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    10. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    11. Anna-Lisa Noack & Nicky Pouw, 2015. "A blind spot in food and nutrition security: where culture and social change shape the local food plate," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 169-182, June.
    12. Jay Bost, 2013. "Persea schiedeana : A High Oil “Cinderella Species” Fruit with Potential for Tropical Agroforestry Systems," Sustainability, MDPI, vol. 6(1), pages 1-13, December.
    13. Kliem, Lea & Sagebiel, Julian, 2023. "Consumers' preferences for commons-based and open-source produce: A discrete choice experiment with directional information manipulations," Food Policy, Elsevier, vol. 119(C).
    14. Zewen Hei & Huimin Xiang & Jiaen Zhang & Kaiming Liang & Jiawen Zhong & Meijuan Li & Xiaoqiao Ren, 2021. "Intercropping of Rice and Water Mimosa ( Neptunia oleracea Lour.): A Novel Model to Control Pests and Diseases and Improve Yield and Grain Quality while Reducing N Fertilizer Application," Agriculture, MDPI, vol. 12(1), pages 1-17, December.
    15. Shangdong Yang & Jian Xiao & Ziyue Huang & Renliu Qin & Weizhong He & Limin Liu & Hongjian Liu & Aomei Li & Hongwei Tan, 2024. "Comparison of Soil Biological Properties and Bacterial Diversity in Sugarcane, Soybean, Mung Bean and Peanut Intercropping Systems," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 13(8), pages 1-54, April.
    16. Andrieu, N. & Blundo-Canto, G. & Cruz-Garcia, G.S., 2019. "Trade-offs between food security and forest exploitation by mestizo households in Ucayali, Peruvian Amazon," Agricultural Systems, Elsevier, vol. 173(C), pages 64-77.
    17. Martin Weih & Alison J. Karley & Adrian C. Newton & Lars P. Kiær & Christoph Scherber & Diego Rubiales & Eveline Adam & James Ajal & Jana Brandmeier & Silvia Pappagallo & Angel Villegas-Fernández & Mo, 2021. "Grain Yield Stability of Cereal-Legume Intercrops Is Greater Than Sole Crops in More Productive Conditions," Agriculture, MDPI, vol. 11(3), pages 1-18, March.
    18. Corson, Michael S. & Mondière, Aymeric & Morel, Loïs & van der Werf, Hayo M.G., 2022. "Beyond agroecology: Agricultural rewilding, a prospect for livestock systems," Agricultural Systems, Elsevier, vol. 199(C).
    19. Ramazan Çakmakçı & Mehmet Ali Salık & Songül Çakmakçı, 2023. "Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
    20. Ulukan, Defne & Grillot, Myriam & Benoit, Marc & Bernes, Gun & Dumont, Bertrand & Magne, Marie-Angélina & Monteiro, Leonardo & Parsons, David & Veysset, Patrick & Ryschawy, Julie & Steinmetz, Lucille , 2022. "Positive deviant strategies implemented by organic multi-species livestock farms in Europe," Agricultural Systems, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3019-:d:1622960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.