IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i6p2694-d1615082.html
   My bibliography  Save this article

Gamified Learning for Sustainability: An Innovative Approach to Enhance Hydrogen Literacy and Environmental Awareness Through Simulation-Based Education

Author

Listed:
  • Uroš Kramar

    (Faculty of Logistics, University of Maribor, 3000 Celje, Slovenia)

  • Matjaž Knez

    (Faculty of Logistics, University of Maribor, 3000 Celje, Slovenia)

Abstract

The transition to sustainable energy systems presents a critical challenge for the 21st century, necessitating both technological advancements and transformative educational strategies to foster awareness and knowledge. Hydrogen technologies are pivotal for decarbonization, yet public understanding and acceptance remain limited. This study introduces and evaluates a novel gamified educational framework, uniquely integrating simulation-based learning, collaborative problem-solving, and adaptive instructional scaffolding to enhance hydrogen literacy and sustainability awareness. Unlike traditional pedagogical approaches, this method actively engages learners in real-world decision-making scenarios, bridging the gap between theoretical knowledge and practical applications. This study involved adolescents aged 13–15 from two distinct educational and cultural contexts, one in Europe and one in the Middle East. A pre–post study design assessed knowledge acquisition, gamification engagement, and environmental awareness shifts. Findings reveal statistically significant improvements in technical knowledge and strong positive perceptions of gamified learning as an effective sustainability education tool across both cultural groups (Europe and the Middle East). Variations in engagement across cultural contexts suggest the need for adaptive, context-sensitive educational frameworks. While the findings indicate significant short-term knowledge gains, this study does not assess long-term knowledge retention, which remains an important area for future research. This research contributes to sustainability education by demonstrating how strategically designed gamification can foster behavioral engagement, enhance environmental literacy, and support the global energy transition agenda. This study offers a pioneering perspective on integrating interactive learning methodologies to cultivate sustainability competencies among younger generations.

Suggested Citation

  • Uroš Kramar & Matjaž Knez, 2025. "Gamified Learning for Sustainability: An Innovative Approach to Enhance Hydrogen Literacy and Environmental Awareness Through Simulation-Based Education," Sustainability, MDPI, vol. 17(6), pages 1-25, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2694-:d:1615082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/6/2694/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/6/2694/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Borut Mikulec & Klara Skubic Ermenc, 2016. "Qualifications Frameworks Between Global and European Pressures and Local Responses," SAGE Open, , vol. 6(2), pages 21582440166, May.
    2. Mustapha D. Ibrahim & Fatima A. S. Binofai & Maha O. A. Mohamad, 2022. "Transition to Low-Carbon Hydrogen Energy System in the UAE: Sector Efficiency and Hydrogen Energy Production Efficiency Analysis," Energies, MDPI, vol. 15(18), pages 1-19, September.
    3. Muhammad Umer Zubair & Muhammad Abbas Khan & Muhammad Usman Hassan & Khursheed Ahmed & Taha Aziz, 2024. "Enhancing Student Active Engagement in Class through Game-Based Learning: A Case of Civil Engineering Education," Sustainability, MDPI, vol. 16(14), pages 1-14, July.
    4. Alessandra Di Nardo & Marcella Calabrese & Virginia Venezia & Maria Portarapillo & Maria Turco & Almerinda Di Benedetto & Giuseppina Luciani, 2023. "Addressing Environmental Challenges: The Role of Hydrogen Technologies in a Sustainable Future," Energies, MDPI, vol. 16(23), pages 1-29, December.
    5. Shaima A. Alnaqbi & Abdul Hai Alami, 2023. "Sustainability and Renewable Energy in the UAE: A Case Study of Sharjah," Energies, MDPI, vol. 16(20), pages 1-30, October.
    6. Sebastian Fredershausen & Henrik Lechte & Mathias Willnat & Tobias Witt & Christine Harnischmacher & Tim-Benjamin Lembcke & Matthias Klumpp & Lutz Kolbe, 2021. "Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    7. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharul Sham Dol & Anang Hudaya Muhamad Amin & Hasan Hamdan, 2024. "Advances in Renewable Energy Research and Applications," Energies, MDPI, vol. 17(23), pages 1-7, December.
    2. Pedro Gomes da Cruz Filho & Danielle Devequi Gomes Nunes & Hayna Malta Santos & Alex Álisson Bandeira Santos & Bruna Aparecida Souza Machado, 2023. "From Patents to Progress: Genetic Algorithms in Harmonic Distortion Monitoring Technology," Energies, MDPI, vol. 16(24), pages 1-21, December.
    3. Qi, Ye & Lu, Jiaqi & Liu, Tianle, 2024. "Measuring energy transition away from fossil fuels: A new index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    4. Jorg Markowitsch & Günter Hefler, 2019. "Future developments in Vocational Education and Training in Europe," JRC Working Papers on Labour, Education and Technology 2019-07, Joint Research Centre.
    5. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    6. Jingna Kou & Wei Li & Rui Zhang & Dingxiong Shi, 2023. "Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    7. Moez Krichen & Yasir Basheer & Saeed Mian Qaisar & Asad Waqar, 2023. "A Survey on Energy Storage: Techniques and Challenges," Energies, MDPI, vol. 16(5), pages 1-29, February.
    8. Sun, Zhao & Hu, Chenfeng & Zhang, Rongjun & Li, Hongwei & Wu, Yu & Sun, Zhiqiang, 2023. "Simulation of the deoxygenated and decarburized biomass cascade utilization system for comprehensive upgrading of green hydrogen generation," Renewable Energy, Elsevier, vol. 219(P2).
    9. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    10. Razzaqul Ahshan, 2021. "Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    11. Alessandro Franco & Caterina Giovannini, 2023. "Routes for Hydrogen Introduction in the Industrial Hard-to-Abate Sectors for Promoting Energy Transition," Energies, MDPI, vol. 16(16), pages 1-23, August.
    12. Lorenzo Bolfo & Francesco Devia & Guglielmo Lomonaco, 2021. "Nuclear Hydrogen Production: Modeling and Preliminary Optimization of a Helical Tube Heat Exchanger," Energies, MDPI, vol. 14(11), pages 1-24, May.
    13. Ibrahim, Mustapha D. & Pereira, Miguel Alves & Caldas, Paulo, 2024. "Efficiency analysis of the innovation-driven sustainable logistics industry," Socio-Economic Planning Sciences, Elsevier, vol. 96(C).
    14. Daniela Baglieri, 2024. "Turning green hydrogen into firms’ decarbonization strategies: opportunities, challenges, and implications for China," Asian Business & Management, Palgrave Macmillan, vol. 23(5), pages 660-682, November.
    15. Svetlana Revinova & Inna Lazanyuk & Svetlana Ratner & Konstantin Gomonov, 2023. "Forecasting Development of Green Hydrogen Production Technologies Using Component-Based Learning Curves," Energies, MDPI, vol. 16(11), pages 1-19, May.
    16. Abdul Ghani Olabi & Enas Taha Sayed, 2023. "Developments in Hydrogen Fuel Cells," Energies, MDPI, vol. 16(5), pages 1-5, March.
    17. Ahmed I. Osman & Mahmoud Nasr & A. R. Mohamed & Amal Abdelhaleem & Ali Ayati & Mohamed Farghali & Ala'a H. Al‐Muhtaseb & Ahmed S. Al‐Fatesh & David W. Rooney, 2024. "Life cycle assessment of hydrogen production, storage, and utilization toward sustainability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(3), May.
    18. Carmona, Roberto & Miranda, Ricardo & Rodriguez, Pablo & Garrido, René & Serafini, Daniel & Rodriguez, Angel & Mena, Marcelo & Fernandez Gil, Alejandro & Valdes, Javier & Masip, Yunesky, 2024. "Assessment of the green hydrogen value chain in cases of the local industry in Chile applying an optimization model," Energy, Elsevier, vol. 300(C).
    19. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    20. Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2694-:d:1615082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.