IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p2209-d1604660.html
   My bibliography  Save this article

Study on the Coupling and Harmonization of Agricultural Economy, Population Development, and Ecological Environment in the Yangtze River Basin

Author

Listed:
  • Pengling Liu

    (School of Rural Revitalization, Anhui Agricultural University, Hefei 230036, China)

  • Caozhe Wang

    (School of Economics and Management, Anhui Agricultural University, Hefei 230036, China)

  • Xinyi Xie

    (School of Agricultural & Life Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA)

  • Tongwei Lu

    (School of Economics and Management, Anhui Agricultural University, Hefei 230036, China)

Abstract

Achieving green, low-carbon, and sustainable development in the Yangtze River Basin is an important part of promoting the modernization of agriculture and rural areas. Based on the panel data of 19 provinces in the Yangtze River Basin from 2002 to 2022, this article constructed a comprehensive evaluation system for the agricultural economy–population development–ecological environment system. By using the entropy-weighted TOPSIS method and the coupling coordination degree model, the comprehensive development level and the coupling coordination status of the agricultural economy, population development, and ecological environment system in the Yangtze River Basin were quantitatively analyzed. The results show the following: (1) The comprehensive index of the agricultural economy–population development–ecological environment system in the Yangtze River Basin shows a fluctuating upward trend, with obvious regional differences, and the comprehensive level showed a trend of gradual improvement from west to east. (2) The coupling degree of the agricultural economy–population development–ecological environment system in the Yangtze River Basin exhibits a volatile characteristic, initially increasing, then decreasing, and subsequently increasing again. Overall, the trend is moving toward a tighter coupling state. (3) The coupling degree of the agricultural economy–population development–ecological environment system in the provinces of the Yangtze River Basin shows a steadily increasing trend, yet the overall coupling coordination degree is not high and remains in a barely coordinated state. Accordingly, suggestions are put forward to optimize the economic structure, improve the population quality, adhere to ecological protection, and accelerate regional linkage so as to promote the coordinated development of economic development, population growth, and ecological protection in the basin.

Suggested Citation

  • Pengling Liu & Caozhe Wang & Xinyi Xie & Tongwei Lu, 2025. "Study on the Coupling and Harmonization of Agricultural Economy, Population Development, and Ecological Environment in the Yangtze River Basin," Sustainability, MDPI, vol. 17(5), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2209-:d:1604660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/2209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/2209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dekai Tao & Wenli Zhou, 2022. "An Evaluation and Optimization of Green Development Strategy for the Nanjing-Hangzhou Eco-Economic Zone in China," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    2. Zhenxiao Xu & Yongqiang Yin, 2021. "Regional Development Quality of Yangtze River Delta: From the Perspective of Urban Population Agglomeration and Ecological Efficiency Coordination," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    3. He, Jie & Wang, Hua, 2012. "Economic structure, development policy and environmental quality: An empirical analysis of environmental Kuznets curves with Chinese municipal data," Ecological Economics, Elsevier, vol. 76(C), pages 49-59.
    4. Xiqiang Xia & Junhu Ruan, 2020. "Analyzing Barriers for Developing a Sustainable Circular Economy in Agriculture in China Using Grey-DEMATEL Approach," Sustainability, MDPI, vol. 12(16), pages 1-25, August.
    5. Hui Tang & Yun Chen & Rongjun Ao & Xue Shen & Guoning Shi, 2022. "Spatial–Temporal Characteristics and Driving Factors of the Coupling Coordination between Population Health and Economic Development in China," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    6. Xue Wu & Yaliu Yang & Conghu Liu & Guowei Xu & Yuxia Guo & Fan Liu & Yuan Wang, 2021. "Sustainability of Regional Agroecological Economic System Based on Emergy Theory: A Case Study of Anhui Province, China," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    7. Patricia Urban & Markus Hametner, 2022. "The Economy–Environment Nexus: Sustainable Development Goals Interlinkages in Austria," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    8. Tongning Li & Daozheng Li & Diling Liang & Simin Huang, 2022. "Coupling Coordination Degree of Ecological-Economic and Its Influencing Factors in the Counties of Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    9. Jialiang Ni & Xiaodong Zheng & Yuman Zheng & Yunhe Zhang & Huan Li, 2023. "Coupling Coordination Development of the Ecological–Economic System in Hangzhou, China," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giedrė Lapinskienė & Kęstutis Peleckis & Neringa Slavinskaitė, 2017. "Energy consumption, economic growth and greenhouse gas emissions in the European Union countries," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(6), pages 1082-1097, November.
    2. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    3. Martins, Flavio Pinheiro & De-León Almaraz, Sofía & Botelho Junior, Amilton Barbosa & Azzaro-Pantel, Catherine & Parikh, Priti, 2024. "Hydrogen and the sustainable development goals: Synergies and trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    4. Zhenhua Xu & Fuyi Ci, 2023. "Spatial-Temporal Characteristics and Driving Factors of Coupling Coordination between the Digital Economy and Low-Carbon Development in the Yellow River Basin," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    5. QIN, Bo & WU, Jianfeng, 2015. "Does urban concentration mitigate CO2 emissions? Evidence from China 1998–2008," China Economic Review, Elsevier, vol. 35(C), pages 220-231.
    6. Yu Mao & Yonglin Li & Deyi Xu & Yaqi Wu & Jinhua Cheng, 2022. "Spatial-Temporal Evolution of Total Factor Productivity in Logistics Industry of the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    7. Ilya Zelenskiy & Danila Parygin & Oksana Savina & Alexey Finogeev & Alexander Gurtyakov, 2022. "Effective Implementation of Integrated Area Development Based on Consumer Attractiveness Assessment," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    8. Matias Piaggio & Emilio Padilla & Carolina Roman, 2015. "The long-run relationshiop between C02 emissions and economic activity in a small open economy: Uruguay 1882-2010," Working Papers wpdea1506, Department of Applied Economics at Universitat Autonoma of Barcelona.
    9. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    10. Shufen Guo & Ludi Wen & Yanrui Wu & Xiaohang Yue & Guilian Fan, 2020. "Fiscal Decentralization and Local Environmental Pollution in China," IJERPH, MDPI, vol. 17(22), pages 1-17, November.
    11. Ren, Shenggang & Yuan, Baolong & Ma, Xie & Chen, Xiaohong, 2014. "The impact of international trade on China׳s industrial carbon emissions since its entry into WTO," Energy Policy, Elsevier, vol. 69(C), pages 624-634.
    12. Daberechi Chikezie Ekwueme & Taiwo Temitope Lasisi & Kayode Kolawole Eluwole, 2023. "Environmental sustainability in Asian countries: Understanding the criticality of economic growth, industrialization, tourism import, and energy use," Energy & Environment, , vol. 34(5), pages 1592-1618, August.
    13. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    14. Ma, Hongqi & Zou, Jingxian, 2022. "Impacts of official high-standard scenic spots on environment and growth — Evidence from China's 5A scenic spots at the city level," Ecological Economics, Elsevier, vol. 201(C).
    15. Najeh Bouchoucha, 2021. "The Effect of Environmental Degradation on Health Status: Do Institutions Matter?," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(4), pages 1618-1634, December.
    16. Lu Gan & Yuanyuan Wang & Yusheng Wang & Benjamin Lev & Wenjing Shen & Wen Jiang, 2021. "Coupling coordination analysis with data-driven technology for disaster–economy–ecology system: an empirical study in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2123-2153, July.
    17. Yuan, Huaxi & Feng, Yidai & Lee, Chien-Chiang & Cen, Yan, 2020. "How does manufacturing agglomeration affect green economic efficiency?," Energy Economics, Elsevier, vol. 92(C).
    18. Fozia Latif Gill & K Kuperan Viswanathan & Mohd Zaini Abdul Karim, 2018. "The Critical Review of the Pollution Haven Hypothesis (PHH)," International Journal of Energy Economics and Policy, Econjournals, vol. 8(1), pages 167-174.
    19. Cheng, Jinhua & Dai, Sheng & Ye, Xinyue, 2016. "Spatiotemporal heterogeneity of industrial pollution in China," China Economic Review, Elsevier, vol. 40(C), pages 179-191.
    20. Wen Qu & Hao Lian & Yao Wang & Yan Ma, 2023. "Spatiotemporal Evolution of the Coupling Coordination Relationship of “Population–Environment” Development in the Xi’an Metropolitan Area," Sustainability, MDPI, vol. 15(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2209-:d:1604660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.