IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1028-d1578314.html
   My bibliography  Save this article

Power Demand Patterns of Public Electric Vehicle Charging: A 2030 Forecast Based on Real-Life Data

Author

Listed:
  • Marco Baronchelli

    (Department of Energy, Politecnico di Milano, 20156 Milano, Italy)

  • Davide Falabretti

    (Department of Energy, Politecnico di Milano, 20156 Milano, Italy)

  • Francesco Gulotta

    (Department of Energy System Development, Ricerca sul Sistema Energetico, 20134 Milano, Italy)

Abstract

As the adoption of electric vehicles accelerates, understanding the impact of public charging on the power grid is crucial. However, today, a notable gap exists in the literature regarding approaches capable of accurately estimating the expected influence of e-mobility power demand on electrical grids, especially at medium and low voltage levels. To fill this gap, in this study, a procedure is proposed to estimate the power demand patterns of public car parks in a 2030 scenario. To this end, data collected from real-life car parks in Italy are used in Monte Carlo simulations, where probabilistic daily power demand curves are created with different maximum charging powers (from 7.4 kW to ultra-fast charging). The results highlight high variability in the power demand depending on the location and type of car park. City center car parks exhibit peak demand during morning hours, linked to commercial activities, while car parks near railway stations and hospitals show demand patterns aligned with transportation and healthcare needs. Business area car parks, in contrast, have a more pronounced demand during work hours on weekdays, with much lower activity during weekends. This study also demonstrates that, in some situations, ultra-fast charging can increase peak power demand from the grid by up to 210%. Given their contribution to the existing literature, the power demand patterns from this research constitute a valuable starting point for future studies aimed at quantitatively assessing the impact of e-mobility on the power system. In addition, they can effectively support decision-makers in optimally designing the e-mobility recharge infrastructure.

Suggested Citation

  • Marco Baronchelli & Davide Falabretti & Francesco Gulotta, 2025. "Power Demand Patterns of Public Electric Vehicle Charging: A 2030 Forecast Based on Real-Life Data," Sustainability, MDPI, vol. 17(3), pages 1-41, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1028-:d:1578314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1028/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1028/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paterakis, Nikolaos G. & Gibescu, Madeleine, 2016. "A methodology to generate power profiles of electric vehicle parking lots under different operational strategies," Applied Energy, Elsevier, vol. 173(C), pages 111-123.
    2. Mangipinto, Andrea & Lombardi, Francesco & Sanvito, Francesco Davide & Pavičević, Matija & Quoilin, Sylvain & Colombo, Emanuela, 2022. "Impact of mass-scale deployment of electric vehicles and benefits of smart charging across all European countries," Applied Energy, Elsevier, vol. 312(C).
    3. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Tran, Martino & Banister, David & McCulloch, Malcolm D., 2013. "Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV," Applied Energy, Elsevier, vol. 111(C), pages 206-218.
    4. Yang, Xiong & Peng, Zhenhan & Wang, Pinxi & Zhuge, Chengxiang, 2023. "Seasonal variance in electric vehicle charging demand and its impacts on infrastructure deployment: A big data approach," Energy, Elsevier, vol. 280(C).
    5. de la Torre, S. & Aguado, J.A. & Sauma, E., 2023. "Optimal scheduling of ancillary services provided by an electric vehicle aggregator," Energy, Elsevier, vol. 265(C).
    6. Raveendran, Visal & Alvarez-Bel, Carlos & Nair, Manjula G., 2020. "Assessing the ancillary service potential of electric vehicles to support renewable energy integration in touristic islands: A case study from Balearic island of Menorca," Renewable Energy, Elsevier, vol. 161(C), pages 495-509.
    7. Tong, Ziqiang & Mansouri, Seyed Amir & Huang, Shoujun & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos, 2023. "The role of smart communities integrated with renewable energy resources, smart homes and electric vehicles in providing ancillary services: A tri-stage optimization mechanism," Applied Energy, Elsevier, vol. 351(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sagar Hossain & Md. Rokonuzzaman & Kazi Sajedur Rahman & A. K. M. Ahasan Habib & Wen-Shan Tan & Md Mahmud & Shahariar Chowdhury & Sittiporn Channumsin, 2023. "Grid-Vehicle-Grid (G2V2G) Efficient Power Transmission: An Overview of Concept, Operations, Benefits, Concerns, and Future Challenges," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    2. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    3. Sabadini, Felipe & Madlener, Reinhard, 2025. "Does taxation hamper the vehicle-to-grid business case? Empirical evidence from Germany," Applied Energy, Elsevier, vol. 381(C).
    4. Petit, Martin & Prada, Eric & Sauvant-Moynot, Valérie, 2016. "Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime," Applied Energy, Elsevier, vol. 172(C), pages 398-407.
    5. Cleary, Kathryne & Palmer, Karen, 2020. "Encouraging Electrification through Energy Service Subscriptions," RFF Working Paper Series 20-09, Resources for the Future.
    6. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    7. Quintero Fuentes, Abel & Hickman, Mark & Whitehead, Jake, 2025. "Zone substations' readiness to embrace electric vehicle adoption: Brisbane case study," Energy, Elsevier, vol. 322(C).
    8. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    9. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    10. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    11. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Banister, David, 2016. "Estimating the grid payments necessary to compensate additional costs to prospective electric vehicle owners who provide vehicle-to-grid ancillary services," Energy, Elsevier, vol. 94(C), pages 715-727.
    12. Zang, Xingyu & Li, Hangxin & Wang, Shengwei, 2025. "Levelized cost quantification of energy flexibility in high-density cities and evaluation of demand-side technologies for providing grid services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    13. Alexandre F. M. Correia & Pedro Moura & Aníbal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    14. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    15. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    16. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    17. Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, vol. 8(11), pages 1-19, November.
    18. Xiangchu Xu & Zewei Zhan & Zengqiang Mi & Ling Ji, 2023. "An Optimized Decision Model for Electric Vehicle Aggregator Participation in the Electricity Market Based on the Stackelberg Game," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    19. Keumju Lim & Justine Jihyun Kim & Jongsu Lee, 2020. "Forecasting the future scale of vehicle to grid technology for electric vehicles and its economic value as future electric energy source: The case of South Korea," Energy & Environment, , vol. 31(8), pages 1350-1366, December.
    20. Nezamoddini, Nasim & Wang, Yong, 2016. "Risk management and participation planning of electric vehicles in smart grids for demand response," Energy, Elsevier, vol. 116(P1), pages 836-850.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1028-:d:1578314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.