IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8917-d1766650.html
   My bibliography  Save this article

The Effect of Hormonal Priming on Morphological Characteristics and Antioxidant Enzyme Activities in Silage Maize Under Salt Stress

Author

Listed:
  • Semih Acikbas

    (Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Türkiye)

  • Abidin Tayga Bulut

    (Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Türkiye)

Abstract

Salinity is one of the major problems limiting plant growth, development, survival, yield, and quality. Climate change and increasing salinity levels force a concentration on sustainable production systems. Therefore, this study aimed to determine the effects of different doses of gibberellic acid (GA 3 ) (0, 150, and 300 mg/L) and salicylic acid (SA) (0, 0.25, and 0.50 mM) priming on some morphological and antioxidant enzyme activities of silage maize ( Zea mays L.) seedlings exposed to salinity stress. Four different NaCl (0, 75, 150, and 225 mM) concentrations as salt stress and three different doses of both SA and GA 3 were investigated. The data obtained were subjected to analysis of variance according to a randomized complete block design using a factorial experimental design with four replications per treatment in 3 L pots. The results showed that GA 3 and SA priming had statistically significant effects on all investigated traits under different salt concentrations (except water content). Findings revealed that shoot, root, and leaf development, as well as antioxidant enzymes, were suppressed by salinity stress. The silage maize plant was statistically significantly affected starting from the lowest dose of 75 mM, depending on salt concentrations. Increasing salt concentrations negatively affected above-ground and below-ground parameters. However, SA and GA 3 treatments had positive impacts on all examined traits. SA and GA 3 priming treatments emerged as important strategies supporting root and shoot growth under saline conditions, thereby strengthening plant adaptation. The best results were obtained in groups exposed to 75 mM salt stress, where 300 mg/L GA3 was applied, and in groups without salt stress, where the same GA3 dose was applied. It was concluded that GA 3 priming treatments, in particular, were more effective than SA treatments, alleviating salt stress and positively contributing to plant development.

Suggested Citation

  • Semih Acikbas & Abidin Tayga Bulut, 2025. "The Effect of Hormonal Priming on Morphological Characteristics and Antioxidant Enzyme Activities in Silage Maize Under Salt Stress," Sustainability, MDPI, vol. 17(19), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8917-:d:1766650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grewal, Harsharn Singh, 2010. "Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity," Agricultural Water Management, Elsevier, vol. 97(1), pages 148-156, January.
    2. Feng, Genxiang & Zhang, Zhanyu & Wan, Changyu & Lu, Peirong & Bakour, Ahmad, 2017. "Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system," Agricultural Water Management, Elsevier, vol. 193(C), pages 205-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    2. Syed Ayyaz Javed & Muhammad Saleem Arif & Sher Muhammad Shahzad & Muhammad Ashraf & Rizwana Kausar & Taimoor Hassan Farooq & M. Iftikhar Hussain & Awais Shakoor, 2021. "Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply?," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    3. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Bai, Zhentao & Bai, Wenqiang & Xie, Cong & Yu, Jiang & Dai, Yulong & Pei, Shengzhao & Zhang, Fucang & Li, Yunxia & Fan, Junliang & Yin, Feihu, 2023. "Irrigation depth and nitrogen rate effects on seed cotton yield, fiber quality and water-nitrogen utilization efficiency in southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 290(C).
    5. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    6. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Tianyu Wang & Zhenghe Xu & Guibin Pang, 2019. "Effects of Irrigating with Brackish Water on Soil Moisture, Soil Salinity, and the Agronomic Response of Winter Wheat in the Yellow River Delta," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    8. Kaveney, Brooke & Barrett-Lennard, Edward & Chau Minh, Khoi & Dang Duy, Minh & Nguyen Thi, Kim Phuong & Kristiansen, Paul & Orgill, Susan & Stewart-Koster, Ben & Condon, Jason, 2023. "Inland dry season saline intrusion in the Vietnamese Mekong River Delta is driving the identification and implementation of alternative crops to rice," Agricultural Systems, Elsevier, vol. 207(C).
    9. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).
    10. D.D. Wei & D. Cheng & W.B. Liu & T. Liu & X.H. Yang & Y.H. Zheng, 2015. "Adequate potassium application enhances salt tolerance of moderate-halophyte Sophora alopecuroides," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(8), pages 364-370.
    11. Cao, Yune & Gao, Yanming & Li, Jianshe & Tian, Yongqiang, 2019. "Straw composts, gypsum and their mixtures enhance tomato yields under continuous saline water irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    12. Li, Jianshe & Gao, Yanming & Zhang, Xueyan & Tian, Ping & Li, Juan & Tian, Yongqiang, 2019. "Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield and fruit quality," Agricultural Water Management, Elsevier, vol. 213(C), pages 521-533.
    13. Murad, Khandakar Faisal Ibn & Hossain, Akbar & Fakir, Oli Ahmed & Biswas, Sujit Kumar & Sarker, Khokan Kumer & Rannu, Rahena Parvin & Timsina, Jagadish, 2018. "Conjunctive use of saline and fresh water increases the productivity of maize in saline coastal region of Bangladesh," Agricultural Water Management, Elsevier, vol. 204(C), pages 262-270.
    14. Wang, He & Zheng, Chunlian & Ning, Songrui & Cao, Caiyun & Li, Kejiang & Dang, Hongkai & Wu, Yuqing & Zhang, Junpeng, 2023. "Impacts of long-term saline water irrigation on soil properties and crop yields under maize-wheat crop rotation," Agricultural Water Management, Elsevier, vol. 286(C).
    15. Yu Fu & Pengyu Wang & Wengeng Cao & Shiqian Fu & Juanjuan Zhang & Xiangzhi Li & Jiju Guo & Zhiquan Huang & Xidong Chen, 2024. "Long-Term Assessment of Soil Salinization Patterns in the Yellow River Delta Using Landsat Imagery from 2003 to 2021," Land, MDPI, vol. 14(1), pages 1-17, December.
    16. Qian, Yingzhi & Han, Xudong & Zhu, Yan & Yang, Wei & Huang, Jiesheng, 2025. "A modified model for simulating subsurface drainage with synthetic envelope considering impacts of entrance resistance and its application," Agricultural Water Management, Elsevier, vol. 310(C).
    17. Yuan, Chengfu, 2024. "Simulation of water-salt transport and balance in cultivated-wasteland system based on SWAP model in Hetao Irrigation District of China," Agricultural Water Management, Elsevier, vol. 305(C).
    18. Zemin Zhang & Zhanyu Zhang & Genxiang Feng & Peirong Lu & Mingyi Huang & Xinyu Zhao, 2022. "Biochar Amendment Combined with Straw Mulching Increases Winter Wheat Yield by Optimizing Soil Water-Salt Condition under Saline Irrigation," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    19. William Fenner & Edna Maria Bonfim-Silva & Tonny José Araújo da Silva & Túlio Santos Martinez & Thiago Henrique Ferreira Matos Castañon & Luana Gláup Araújo Dourado, 2024. "Initial Development of Safflower Submitted to Irrigation Water Salinity Levels," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 11(1), pages 200-200, April.
    20. Ma, Changjian & Wenbiao, Wu & Hou, Peng & Wang, Yue & Li, Bowen & Yuan, Huabin & Liu, Lining & Wang, Xuejun & Sun, Zeqiang & Li, Yan, 2025. "Effect of combined nitrogen and phosphorus fertilization on summer maize yield and soil fertility in coastal saline-alkali land," Agricultural Water Management, Elsevier, vol. 309(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8917-:d:1766650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.