IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v212y2019icp424-432.html
   My bibliography  Save this article

Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China

Author

Listed:
  • Yuan, Chengfu
  • Feng, Shaoyuan
  • Huo, Zailin
  • Ji, Quanyi

Abstract

In order to explore the utilization of groundwater resource, field experiments were conducted in 2012 and 2013 in the Shiyang River Basin of Northwest China. Altogether nine treatments included three water levels w1, w2 and w3 (1ETc, 2/3ETc, and 1/2ETc, ETc = 555 mm) in combination with three salinity levels s1, s2 and s3 (0.71 g/L, 3 g/L and 6 g/L).Soil water content, soil salt content and yield of maize for seed production were measured for studying the effects of deficit irrigation with saline water on water-salt distribution and water use efficiency of maize for seed production. The results showed that soil water content of saline water irrigation was higher than fresh water irrigation and soil salt content increased with increase of irrigation water salinity under the same irrigation water amount. Soil water content of deficit irrigation was lower than sufficient irrigation and soil salt content increased with decrease of irrigation water amount under the same irrigation water salinity. The soil salt accumulation increased gradually with increase of irrigation water salinity and decrease of irrigation water amount under the combined effect of irrigation water amount and irrigation water salinity. Irrigation with water salinity of 3 g/L and water amount of 370 mm will not cause a substantial yield reduction and could increase water use efficiency of maize for seed production. Irrigation schedule with irrigation water amount about 370 mm and irrigation water salinity below 3 g/L is recommended in this study area. The irrigation schedule of this study can be used in the practice of agricultural production and the results show a reasonably utilization of saline water, thereby supplying theoretical guidance for water-saving irrigation development.

Suggested Citation

  • Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
  • Handle: RePEc:eee:agiwat:v:212:y:2019:i:c:p:424-432
    DOI: 10.1016/j.agwat.2018.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418306723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malash, N. & Flowers, T.J. & Ragab, R., 2005. "Effect of irrigation systems and water management practices using saline and non-saline water on tomato production," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 25-38, September.
    2. Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
    3. Feng, Genxiang & Zhang, Zhanyu & Wan, Changyu & Lu, Peirong & Bakour, Ahmad, 2017. "Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system," Agricultural Water Management, Elsevier, vol. 193(C), pages 205-213.
    4. Chauhan, C.P.S. & Singh, R.B. & Gupta, S.K., 2008. "Supplemental irrigation of wheat with saline water," Agricultural Water Management, Elsevier, vol. 95(3), pages 253-258, March.
    5. Du, Taisheng & Kang, Shaozhong & Sun, Jingsheng & Zhang, Xiying & Zhang, Jianhua, 2010. "An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China," Agricultural Water Management, Elsevier, vol. 97(1), pages 66-74, January.
    6. Ould Ahmed, B.A. & Inoue, M. & Moritani, S., 2010. "Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheat," Agricultural Water Management, Elsevier, vol. 97(1), pages 165-170, January.
    7. Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
    8. Wang, Qingming & Huo, Zailin & Zhang, Liudong & Wang, Jianhua & Zhao, Yong, 2016. "Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China," Agricultural Water Management, Elsevier, vol. 163(C), pages 125-138.
    9. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    10. Ali, M.H. & Hoque, M.R. & Hassan, A.A. & Khair, A., 2007. "Effects of deficit irrigation on yield, water productivity, and economic returns of wheat," Agricultural Water Management, Elsevier, vol. 92(3), pages 151-161, September.
    11. Webber, H.A. & Madramootoo, C.A. & Bourgault, M. & Horst, M.G. & Stulina, G. & Smith, D.L., 2006. "Water use efficiency of common bean and green gram grown using alternate furrow and deficit irrigation," Agricultural Water Management, Elsevier, vol. 86(3), pages 259-268, December.
    12. Ben-Asher, J. & van Dam, J. & Feddes, R.A. & Jhorar, R.K., 2006. "Irrigation of grapevines with saline water: II. Mathematical simulation of vine growth and yield," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 22-29, May.
    13. Kifle, Mulubrehan & Gebretsadikan, T.G., 2016. "Yield and water use efficiency of furrow irrigated potato under regulated deficit irrigation, Atsibi-Wemberta, North Ethiopia," Agricultural Water Management, Elsevier, vol. 170(C), pages 133-139.
    14. Mao, Xuesen & Liu, Mengyu & Wang, Xinyuan & Liu, Changming & Hou, Zhimin & Shi, Jinzhi, 2003. "Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain," Agricultural Water Management, Elsevier, vol. 61(3), pages 219-228, July.
    15. Mansouri-Far, Cyrus & Modarres Sanavy, Seyed Ali Mohammad & Saberali, Seyed Farhad, 2010. "Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 97(1), pages 12-22, January.
    16. Wan, Shuqin & Kang, Yaohu & Wang, Dan & Liu, Shi-ping, 2010. "Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in North China," Agricultural Water Management, Elsevier, vol. 98(1), pages 105-113, December.
    17. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    18. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Dong, Xinliang & Wang, Jintao & Zhang, Xuejia & Dang, Hongkai & Singh, Bhupinder Pal & Liu, Xiaojing & Sun, Hongyong, 2022. "Long-term saline water irrigation decreased soil organic carbon and inorganic carbon contents," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Ke, Zengming & Liu, Xiaoli & Ma, Lihui & Feng, Zhe & Tu, Wen & Dong, Qin’ge & Jiao, Feng & Wang, Zhanli, 2021. "Rainstorm events increase risk of soil salinization in a loess hilly region of China," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Tianyu Wang & Zhenghe Xu & Guibin Pang, 2019. "Effects of Irrigating with Brackish Water on Soil Moisture, Soil Salinity, and the Agronomic Response of Winter Wheat in the Yellow River Delta," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    6. Che, Zheng & Wang, Jun & Li, Jiusheng, 2021. "Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    7. Yifu Zhang & Wancheng Wang & Wei Yuan & Ruihong Zhang & Xiaobo Xi, 2021. "Cattle Manure Application and Combined Straw Mulching Enhance Maize ( Zea mays L.) Growth and Water Use for Rain-Fed Cropping System of Coastal Saline Soils," Agriculture, MDPI, vol. 11(8), pages 1-14, August.
    8. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    9. Qiu, Yuan & Fan, Yaqiong & Chen, Yang & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2021. "Response of dry matter and water use efficiency of alfalfa to water and salinity stress in arid and semiarid regions of Northwest China," Agricultural Water Management, Elsevier, vol. 254(C).
    10. Xufeng Li & Juanjuan Ma & Xihuan Sun & Lijian Zheng & Ruixia Chen & Jianglong An, 2023. "Estimating the Effects of Deficit Irrigation on Water Absorption and Utilization of Tomatoes Grown in Greenhouse with Hydrus-1D Model," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    11. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    12. Muhammad, Tahir & Zhou, Bo & Liu, Zeyuan & Chen, Xiuzhi & Li, Yunkai, 2021. "Effects of phosphorus-fertigation on emitter clogging in drip irrigation system with saline water," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Norhan M. M. El-Syed & Ayman M. Helmy & Sara E. E. Fouda & Mohamed M. Nabil & Tamer A. Abdullah & Sadeq K. Alhag & Laila A. Al-Shuraym & Khalid M. Al Syaad & Anam Ayyoub & Mohsin Mahmood & Ahmed S. El, 2023. "Biochar with Organic and Inorganic Fertilizers Improves Defenses, Nitrogen Use Efficiency, and Yield of Maize Plants Subjected to Water Deficit in an Alkaline Soil," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    14. Ran, Junjun & Ran, Hui & Ma, Longfei & Jennings, Stewart A. & Yu, Tinggao & Deng, Xin & Yao, Ning & Hu, Xiaotao, 2023. "Quantifying water productivity and nitrogen uptake of maize under water and nitrogen stress in arid Northwest China," Agricultural Water Management, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Kifle, Mulubrehan & Gebretsadikan, T.G., 2016. "Yield and water use efficiency of furrow irrigated potato under regulated deficit irrigation, Atsibi-Wemberta, North Ethiopia," Agricultural Water Management, Elsevier, vol. 170(C), pages 133-139.
    3. Ma, Shou-Chen & Zhang, Wei-Qiang & Duan, Ai-Wang & Wang, Tong-Chao, 2019. "Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 221(C), pages 486-492.
    4. Wang, He & Zheng, Chunlian & Ning, Songrui & Cao, Caiyun & Li, Kejiang & Dang, Hongkai & Wu, Yuqing & Zhang, Junpeng, 2023. "Impacts of long-term saline water irrigation on soil properties and crop yields under maize-wheat crop rotation," Agricultural Water Management, Elsevier, vol. 286(C).
    5. Rajesh Kumar Soothar & Wenying Zhang & Binhui Liu & Moussa Tankari & Chao Wang & Li Li & Huanli Xing & Daozhi Gong & Yaosheng Wang, 2019. "Sustaining Yield of Winter Wheat under Alternate Irrigation Using Saline Water at Different Growth Stages: A Case Study in the North China Plain," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    6. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    7. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    8. Chengfu Yuan & Shaoyuan Feng & Zailin Huo & Quanyi Ji, 2019. "Simulation of Saline Water Irrigation for Seed Maize in Arid Northwest China Based on SWAP Model," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
    9. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    10. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).
    11. Dong, Xinliang & Wang, Jintao & Zhang, Xuejia & Dang, Hongkai & Singh, Bhupinder Pal & Liu, Xiaojing & Sun, Hongyong, 2022. "Long-term saline water irrigation decreased soil organic carbon and inorganic carbon contents," Agricultural Water Management, Elsevier, vol. 270(C).
    12. Wang, Yufeng & Kang, Shaozhong & Li, Fusheng & Zhang, Xiaotao, 2021. "Modified water-nitrogen productivity function based on response of water sensitive index to nitrogen for hybrid maize under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    13. Zeng, Ruiyun & Yao, Fengmei & Zhang, Sha & Yang, Shanshan & Bai, Yun & Zhang, Jiahua & Wang, Jingwen & Wang, Xin, 2021. "Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain," Agricultural Water Management, Elsevier, vol. 256(C).
    14. Zhou, Shiwei & Hu, Xiaotao & Ran, Hui & Wang, Wenè & Hansen, Neil & Cui, Ningbo, 2020. "Optimization of irrigation and nitrogen fertilizer management for spring maize in northwestern China using RZWQM2," Agricultural Water Management, Elsevier, vol. 240(C).
    15. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    16. Zemin Zhang & Zhanyu Zhang & Genxiang Feng & Peirong Lu & Mingyi Huang & Xinyu Zhao, 2022. "Biochar Amendment Combined with Straw Mulching Increases Winter Wheat Yield by Optimizing Soil Water-Salt Condition under Saline Irrigation," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    17. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    18. Feng, Genxiang & Zhang, Zhanyu & Wan, Changyu & Lu, Peirong & Bakour, Ahmad, 2017. "Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system," Agricultural Water Management, Elsevier, vol. 193(C), pages 205-213.
    19. Garg, N.K. & Dadhich, Sushmita M., 2014. "A proposed method to determine yield response factors of different crops under deficit irrigation using inverse formulation approach," Agricultural Water Management, Elsevier, vol. 137(C), pages 68-74.
    20. Shrestha, Nirman & Raes, Dirk & Vanuytrecht, Eline & Sah, Shrawan Kumar, 2013. "Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling," Agricultural Water Management, Elsevier, vol. 122(C), pages 53-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:212:y:2019:i:c:p:424-432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.