IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v193y2017icp205-213.html
   My bibliography  Save this article

Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system

Author

Listed:
  • Feng, Genxiang
  • Zhang, Zhanyu
  • Wan, Changyu
  • Lu, Peirong
  • Bakour, Ahmad

Abstract

Sustainable development of saline water irrigation was restricted by salt accumulation in the soil profile without appropriate salt discharging measures. A two year study was conducted in 2014 and 2015 to identify the effect of saline water irrigation on soil salt and maize yield under subsurface drainage system. The treatments of this study comprised three levels of water salinity with 0.78, 3.75, and 6.25dSm−1 (S1–S3) and three levels of subsurface drainage depth with no subsurface drainage, drain depth of 0.8m and 1.2m (D0–D2). Results indicated that the average salt content within the root zone was in the order of D0>D2>D1. No salt accumulation occurred during the two growing seasons under D1, but there was salt accumulation under D2S3. Soil desalinization efficiency reduced with the increasing of irrigation water salinity, and the average desalinization efficiency for D1 was higher than that of D0 and D2. Maize yield and water use efficiency decreased with the increase of water salinity. The yield decreased by 2.08–3.01% for every 1dSm−1 increase in salinity level of irrigation water under D1, and 3.53–3.93% for every 1dSm−1 under D2. The effects of water salinity and drainage depth on maize yield and WUE were significant (p<0.05) in the two growing seasons. From the view points of relative yield and soil salt balance, it can be recognized even as the salinity level of irrigation water is as high as 6.25dSm−1, saline water can be applied to irrigate maize under drain depth of 0.8m.

Suggested Citation

  • Feng, Genxiang & Zhang, Zhanyu & Wan, Changyu & Lu, Peirong & Bakour, Ahmad, 2017. "Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system," Agricultural Water Management, Elsevier, vol. 193(C), pages 205-213.
  • Handle: RePEc:eee:agiwat:v:193:y:2017:i:c:p:205-213
    DOI: 10.1016/j.agwat.2017.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741730255X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malash, N. & Flowers, T.J. & Ragab, R., 2005. "Effect of irrigation systems and water management practices using saline and non-saline water on tomato production," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 25-38, September.
    2. Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
    3. van Hoorn, J. W. & Katerji, N. & Hamdy, A. & Mastrorilli, M., 1993. "Effect of saline water on soil salinity and on water stress, growth, and yield of wheat and potatoes," Agricultural Water Management, Elsevier, vol. 23(3), pages 247-265, June.
    4. Wan, Shuqin & Kang, Yaohu & Wang, Dan & Liu, Shi-Ping & Feng, Li-Ping, 2007. "Effect of drip irrigation with saline water on tomato (Lycopersicon esculentum Mill) yield and water use in semi-humid area," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 63-74, May.
    5. Kang, Yaohu & Chen, Ming & Wan, Shuqin, 2010. "Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain," Agricultural Water Management, Elsevier, vol. 97(9), pages 1303-1309, September.
    6. Beltran, Julian Martinez, 1999. "Irrigation with saline water: benefits and environmental impact," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 183-194, May.
    7. de Azevedo, Pedro V. & da Silva, Bernardo B. & da Silva, Vicente P. R., 2003. "Water requirements of irrigated mango orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 58(3), pages 241-254, February.
    8. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter," Agricultural Water Management, Elsevier, vol. 148(C), pages 177-188.
    9. Minhas, P. S. & Gupta, R. K., 1993. "Conjunctive use of saline and non-saline waters. I. Response of wheat to initial salinity profiles and salinisation patterns," Agricultural Water Management, Elsevier, vol. 23(2), pages 125-137, April.
    10. Ali, M.H. & Hoque, M.R. & Hassan, A.A. & Khair, A., 2007. "Effects of deficit irrigation on yield, water productivity, and economic returns of wheat," Agricultural Water Management, Elsevier, vol. 92(3), pages 151-161, September.
    11. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    12. Singh, R. & Helmers, M.J. & Qi, Zhiming, 2006. "Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa's tile landscapes," Agricultural Water Management, Elsevier, vol. 85(3), pages 221-232, October.
    13. Amer, Kamal H., 2010. "Corn crop response under managing different irrigation and salinity levels," Agricultural Water Management, Elsevier, vol. 97(10), pages 1553-1563, October.
    14. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murad, Khandakar Faisal Ibn & Hossain, Akbar & Fakir, Oli Ahmed & Biswas, Sujit Kumar & Sarker, Khokan Kumer & Rannu, Rahena Parvin & Timsina, Jagadish, 2018. "Conjunctive use of saline and fresh water increases the productivity of maize in saline coastal region of Bangladesh," Agricultural Water Management, Elsevier, vol. 204(C), pages 262-270.
    2. Wang, He & Zheng, Chunlian & Ning, Songrui & Cao, Caiyun & Li, Kejiang & Dang, Hongkai & Wu, Yuqing & Zhang, Junpeng, 2023. "Impacts of long-term saline water irrigation on soil properties and crop yields under maize-wheat crop rotation," Agricultural Water Management, Elsevier, vol. 286(C).
    3. Cao, Yune & Gao, Yanming & Li, Jianshe & Tian, Yongqiang, 2019. "Straw composts, gypsum and their mixtures enhance tomato yields under continuous saline water irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Tianyu Wang & Zhenghe Xu & Guibin Pang, 2019. "Effects of Irrigating with Brackish Water on Soil Moisture, Soil Salinity, and the Agronomic Response of Winter Wheat in the Yellow River Delta," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    6. Kaveney, Brooke & Barrett-Lennard, Edward & Chau Minh, Khoi & Dang Duy, Minh & Nguyen Thi, Kim Phuong & Kristiansen, Paul & Orgill, Susan & Stewart-Koster, Ben & Condon, Jason, 2023. "Inland dry season saline intrusion in the Vietnamese Mekong River Delta is driving the identification and implementation of alternative crops to rice," Agricultural Systems, Elsevier, vol. 207(C).
    7. Syed Ayyaz Javed & Muhammad Saleem Arif & Sher Muhammad Shahzad & Muhammad Ashraf & Rizwana Kausar & Taimoor Hassan Farooq & M. Iftikhar Hussain & Awais Shakoor, 2021. "Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply?," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    8. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Addab, Haider & Bailey, Ryan T., 2022. "Simulating the effect of subsurface tile drainage on watershed salinity using SWAT," Agricultural Water Management, Elsevier, vol. 262(C).
    10. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Li, Jianshe & Gao, Yanming & Zhang, Xueyan & Tian, Ping & Li, Juan & Tian, Yongqiang, 2019. "Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield and fruit quality," Agricultural Water Management, Elsevier, vol. 213(C), pages 521-533.
    13. Zemin Zhang & Zhanyu Zhang & Genxiang Feng & Peirong Lu & Mingyi Huang & Xinyu Zhao, 2022. "Biochar Amendment Combined with Straw Mulching Increases Winter Wheat Yield by Optimizing Soil Water-Salt Condition under Saline Irrigation," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    14. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    15. Genxiang Feng & Zhanyu Zhang & Zemin Zhang, 2019. "Evaluating the Sustainable Use of Saline Water Irrigation on Soil Water-Salt Content and Grain Yield under Subsurface Drainage Condition," Sustainability, MDPI, vol. 11(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    2. Cucci, Giovanna & Lacolla, Giovanni & Boari, Francesca & Mastro, Mario Alberto & Cantore, Vito, 2019. "Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 118-124.
    3. Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
    4. Rajesh Kumar Soothar & Wenying Zhang & Binhui Liu & Moussa Tankari & Chao Wang & Li Li & Huanli Xing & Daozhi Gong & Yaosheng Wang, 2019. "Sustaining Yield of Winter Wheat under Alternate Irrigation Using Saline Water at Different Growth Stages: A Case Study in the North China Plain," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    5. Li, Dan & Wan, Shuqin & Li, Xiaobin & Kang, Yaohu & Han, Xiaoyu, 2022. "Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region," Agricultural Water Management, Elsevier, vol. 261(C).
    6. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    7. Wang, Qingming & Huo, Zailin & Zhang, Liudong & Wang, Jianhua & Zhao, Yong, 2016. "Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China," Agricultural Water Management, Elsevier, vol. 163(C), pages 125-138.
    8. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Wang, Xiangping & Liu, Guangming & Yang, Jingsong & Huang, Guanhua & Yao, Rongjiang, 2017. "Evaluating the effects of irrigation water salinity on water movement, crop yield and water use efficiency by means of a coupled hydrologic/crop growth model," Agricultural Water Management, Elsevier, vol. 185(C), pages 13-26.
    10. Chen, Ming & Kang, Yaohu & Wan, Shuqin & Liu, Shi-ping, 2009. "Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.)," Agricultural Water Management, Elsevier, vol. 96(12), pages 1766-1772, December.
    11. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    12. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    13. Zhou, Beibei & Liang, Chaofan & Chen, Xiaopeng & Ye, Sitan & Peng, Yao & Yang, Lu & Duan, Manli & Wang, Xingpeng, 2022. "Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 263(C).
    14. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    15. Cao, Yune & Tian, Yongqiang & Gao, Lihong & Chen, Qingyun, 2016. "Attenuating the negative effects of irrigation with saline water on cucumber (Cucumis sativus L.) by application of straw biological-reactor," Agricultural Water Management, Elsevier, vol. 163(C), pages 169-179.
    16. Zhangzhong, Lili & Yang, Peiling & Zhen, Wengang & Zhang, Xin & Wang, Caiyuan, 2019. "A kinetic model for the chemical clogging of drip irrigation system using saline water," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    17. Che, Zheng & Wang, Jun & Li, Jiusheng, 2021. "Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    18. Khaleghi, Moazam & Hassanpour, Farzad & Karandish, Fatemeh & Shahnazari, Ali, 2020. "Integrating partial root-zone drying and saline water irrigation to sustain sunflower production in freshwater-scarce regions," Agricultural Water Management, Elsevier, vol. 234(C).
    19. Sun, Qinping & Kröbel, Roland & Müller, Torsten & Römheld, Volker & Cui, Zhenling & Zhang, Fusuo & Chen, Xinping, 2011. "Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain," Agricultural Water Management, Elsevier, vol. 98(5), pages 808-814, March.
    20. Abdelaziz M. Okasha & Nehad Deraz & Adel H. Elmetwalli & Salah Elsayed & Mayadah W. Falah & Aitazaz Ahsan Farooque & Zaher Mundher Yaseen, 2022. "Effects of Irrigation Method and Water Flow Rate on Irrigation Performance, Soil Salinity, Yield, and Water Productivity of Cauliflower," Agriculture, MDPI, vol. 12(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:193:y:2017:i:c:p:205-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.