IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v294y2024ics0378377424000520.html
   My bibliography  Save this article

Stomatal conductance modulates maize yield through water use and yield components under salinity stress

Author

Listed:
  • Liao, Qi
  • Ding, Risheng
  • Du, Taisheng
  • Kang, Shaozhong
  • Tong, Ling
  • Gu, Shujie
  • Gao, Shaoyu
  • Gao, Jia

Abstract

Drought or/and salinity stress significantly impact maize water use and production. However, comprehensive investigations into the genotype × environment interactions (water or/and salinity) on maize growth, water use, and water productivity (WP) and the physiological controlling factors governing maize production remain lacking. In the present study, we rigorously investigated the effect of water or/and salinity on leaf physiological and morphological characteristics, evapotranspiration (ET), yield and its components (kernel number, KN; thousand kernel weight, TKW) for two genotypes (XY335 and ZD958) over two years, and revealed the mechanisms of yield response to these traits. We found that stomatal conductance (gs) and net photosynthesis rate (A), aboveground biomass (AGB), ET, and KN were higher in XY335 compared to those in ZD958 in both years. Water and salinity stress reduced gs, A, leaf area (LA), the fraction of canopy radiation interception (fPAR), AGB, ET, yield, and KN, while increasing intrinsic water use efficiency. Simultaneous water and salinity stress exhibited an antagonistic effect on WP. Yield was modulated by both ET and yield components. ET was mainly regulated by LA, and only KN was driven by A under salt-free condition. However, under salinity stress, ET was jointly regulated by gs and fPAR, and both gs and A affected KN and TKW. Importantly, a decrease in ET induced by stress did not always lead to yield reduction, provided the reduction remained below about 20% of the maximum value. Thus, mildly regulated deficit irrigation or adapting to low-concentration soil salinity stress was preferable for sustaining yield and improving WP. Nevertheless, a combination of both approaches diminished the water-saving benefits of individual farmland management practices. This study filled the knowledge gap regarding the physiological mechanisms of driving yield variations and offered valuable insights for effective crop water management in drought and soil-salinized regions.

Suggested Citation

  • Liao, Qi & Ding, Risheng & Du, Taisheng & Kang, Shaozhong & Tong, Ling & Gu, Shujie & Gao, Shaoyu & Gao, Jia, 2024. "Stomatal conductance modulates maize yield through water use and yield components under salinity stress," Agricultural Water Management, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:agiwat:v:294:y:2024:i:c:s0378377424000520
    DOI: 10.1016/j.agwat.2024.108717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:294:y:2024:i:c:s0378377424000520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.