IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v312y2025ics0378377425001593.html
   My bibliography  Save this article

Evaluation of crop water status using UAV-based images data with a model updating strategy

Author

Listed:
  • Yang, Ning
  • Zhang, Zhitao
  • Yang, Xiaofei
  • Dong, Ning
  • Xu, Qi
  • Chen, Junying
  • Sun, Shikun
  • Cui, Ningbo
  • Ning, Jifeng

Abstract

This study aims to evaluate crop water status by fusing multiple features from the unmanned aerial vehicle (UAV)-based canopy images with model updating strategy. A UAV platform carrying multispectral and thermal infrared cameras was used to collect high spatial resolution images of winter wheat and summer maize under different water treatments over two years. The plant water content (PWC) and above-ground biomass (AGB), which represent crop water status, were collected simultaneously. The vegetation indices (VIs), texture features, and canopy thermal indicators were extracted from UAV-based images to estimate PWC and AGB based on CNN-LSTM-Attention (CLA) model. The results showed that combining spectral, textural, and thermal features with the CLA model significantly improved estimation accuracy. Specifically, multi-feature fusion achieved the best performance in winter wheat, with MAE of 1.80 % and 1.23 %, and RMSE of 2.13 % and 1.57 % for PWC in 2022 and 2023, respectively. For AGB, the corresponding MAE values were 1.12 t/hm² and 1.04 t/hm², and RMSE values were 1.41 t/hm² and 1.31 t/hm². In addition, the model updating strategy successfully verified the robustness of the estimation model for winter wheat across different years, and the application of the CLA model to summer maize demonstrated its effective transferability. In summary, this method can improve the estimation accuracy of PWC and AGB, thereby achieving efficient evaluation of crop water status.

Suggested Citation

  • Yang, Ning & Zhang, Zhitao & Yang, Xiaofei & Dong, Ning & Xu, Qi & Chen, Junying & Sun, Shikun & Cui, Ningbo & Ning, Jifeng, 2025. "Evaluation of crop water status using UAV-based images data with a model updating strategy," Agricultural Water Management, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001593
    DOI: 10.1016/j.agwat.2025.109445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001593
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.