IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v312y2025ics0378377425001593.html
   My bibliography  Save this article

Evaluation of crop water status using UAV-based images data with a model updating strategy

Author

Listed:
  • Yang, Ning
  • Zhang, Zhitao
  • Yang, Xiaofei
  • Dong, Ning
  • Xu, Qi
  • Chen, Junying
  • Sun, Shikun
  • Cui, Ningbo
  • Ning, Jifeng

Abstract

This study aims to evaluate crop water status by fusing multiple features from the unmanned aerial vehicle (UAV)-based canopy images with model updating strategy. A UAV platform carrying multispectral and thermal infrared cameras was used to collect high spatial resolution images of winter wheat and summer maize under different water treatments over two years. The plant water content (PWC) and above-ground biomass (AGB), which represent crop water status, were collected simultaneously. The vegetation indices (VIs), texture features, and canopy thermal indicators were extracted from UAV-based images to estimate PWC and AGB based on CNN-LSTM-Attention (CLA) model. The results showed that combining spectral, textural, and thermal features with the CLA model significantly improved estimation accuracy. Specifically, multi-feature fusion achieved the best performance in winter wheat, with MAE of 1.80 % and 1.23 %, and RMSE of 2.13 % and 1.57 % for PWC in 2022 and 2023, respectively. For AGB, the corresponding MAE values were 1.12 t/hm² and 1.04 t/hm², and RMSE values were 1.41 t/hm² and 1.31 t/hm². In addition, the model updating strategy successfully verified the robustness of the estimation model for winter wheat across different years, and the application of the CLA model to summer maize demonstrated its effective transferability. In summary, this method can improve the estimation accuracy of PWC and AGB, thereby achieving efficient evaluation of crop water status.

Suggested Citation

  • Yang, Ning & Zhang, Zhitao & Yang, Xiaofei & Dong, Ning & Xu, Qi & Chen, Junying & Sun, Shikun & Cui, Ningbo & Ning, Jifeng, 2025. "Evaluation of crop water status using UAV-based images data with a model updating strategy," Agricultural Water Management, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001593
    DOI: 10.1016/j.agwat.2025.109445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001593
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Minghan & Sun, Chengming & Nie, Chenwei & Liu, Shuaibing & Yu, Xun & Bai, Yi & Liu, Yadong & Meng, Lin & Jia, Xiao & Liu, Yuan & Zhou, Lili & Nan, Fei & Cui, Tengyu & Jin, Xiuliang, 2023. "Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Jin, Kaijun & Zhang, Jihong & Wang, Zhenhua & Zhang, Jinzhu & Liu, Ningning & Li, Miao & Ma, Zhanli, 2024. "Application of deep learning based on thermal images to identify the water stress in cotton under film-mulched drip irrigation," Agricultural Water Management, Elsevier, vol. 299(C).
    3. Konstantinos Dolaptsis & Xanthoula Eirini Pantazi & Charalampos Paraskevas & Selçuk Arslan & Yücel Tekin & Bere Benjamin Bantchina & Yahya Ulusoy & Kemal Sulhi Gündoğdu & Muhammad Qaswar & Danyal Bust, 2024. "A Hybrid LSTM Approach for Irrigation Scheduling in Maize Crop," Agriculture, MDPI, vol. 14(2), pages 1-25, January.
    4. Poirier-Pocovi, Magalie & Volder, Astrid & Bailey, Brian N., 2020. "Modeling of reference temperatures for calculating crop water stress indices from infrared thermography," Agricultural Water Management, Elsevier, vol. 233(C).
    5. Wang, Jingjing & Lou, Yu & Wang, Wentao & Liu, Suyi & Zhang, Haohui & Hui, Xin & Wang, Yunling & Yan, Haijun & Maes, Wouter H., 2024. "A robust model for diagnosing water stress of winter wheat by combining UAV multispectral and thermal remote sensing," Agricultural Water Management, Elsevier, vol. 291(C).
    6. Mwinuka, Paul Reuben & Mbilinyi, Boniface P. & Mbungu, Winfred B. & Mourice, Sixbert K. & Mahoo, H.F. & Schmitter, Petra, 2021. "The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L)," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Cheng, Minghan & Jiao, Xiyun & Liu, Yadong & Shao, Mingchao & Yu, Xun & Bai, Yi & Wang, Zixu & Wang, Siyu & Tuohuti, Nuremanguli & Liu, Shuaibing & Shi, Lei & Yin, Dameng & Huang, Xiao & Nie, Chenwei , 2022. "Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    9. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    10. DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
    11. Liao, Qi & Ding, Risheng & Du, Taisheng & Kang, Shaozhong & Tong, Ling & Gu, Shujie & Gao, Shaoyu & Gao, Jia, 2024. "Stomatal conductance modulates maize yield through water use and yield components under salinity stress," Agricultural Water Management, Elsevier, vol. 294(C).
    12. Zhou, Yongcai & Lao, Congcong & Yang, Yalong & Zhang, Zhitao & Chen, Haiying & Chen, Yinwen & Chen, Junying & Ning, Jifeng & Yang, Ning, 2021. "Diagnosis of winter-wheat water stress based on UAV-borne multispectral image texture and vegetation indices," Agricultural Water Management, Elsevier, vol. 256(C).
    13. Dorijan Radočaj & Ante Šiljeg & Rajko Marinović & Mladen Jurišić, 2023. "State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qi & Hu, Xiaolong & Zhang, Yiqiang & Shi, Liangsheng & Yang, Wei & Yang, Yixuan & Zhang, Ruxin & Zhang, Dongliang & Miao, Ze & Wang, Yifan & Qu, Zhongyi, 2025. "Improving maize water stress diagnosis accuracy by integrating multimodal UAVs data and leaf area index inversion model," Agricultural Water Management, Elsevier, vol. 312(C).
    2. Liu, Quanshan & Wu, Zongjun & Cui, Ningbo & Zheng, Shunsheng & Zhu, Shidan & Jiang, Shouzheng & Wang, Zhihui & Gong, Daozhi & Wang, Yaosheng & Zhao, Lu, 2024. "Soil moisture content estimation of drip-irrigated citrus orchard based on UAV images and machine learning algorithm in Southwest China," Agricultural Water Management, Elsevier, vol. 303(C).
    3. Cheng, Minghan & Sun, Chengming & Nie, Chenwei & Liu, Shuaibing & Yu, Xun & Bai, Yi & Liu, Yadong & Meng, Lin & Jia, Xiao & Liu, Yuan & Zhou, Lili & Nan, Fei & Cui, Tengyu & Jin, Xiuliang, 2023. "Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Liu, Quanshan & Wu, Zongjun & Cui, Ningbo & Zheng, Shunsheng & Jiang, Shouzheng & Wang, Zhihui & Gong, Daozhi & Wang, Yaosheng & Zhao, Lu & Wei, Renjuan, 2025. "Estimating stomatal conductance of citrus orchard based on UAV multi-modal information in Southwest China," Agricultural Water Management, Elsevier, vol. 307(C).
    6. Wang, Jingjing & Lou, Yu & Wang, Wentao & Liu, Suyi & Zhang, Haohui & Hui, Xin & Wang, Yunling & Yan, Haijun & Maes, Wouter H., 2024. "A robust model for diagnosing water stress of winter wheat by combining UAV multispectral and thermal remote sensing," Agricultural Water Management, Elsevier, vol. 291(C).
    7. Dong, Hao & Dong, Jiahui & Sun, Shikun & Bai, Ting & Zhao, Dongmei & Yin, Yali & Shen, Xin & Wang, Yakun & Zhang, Zhitao & Wang, Yubao, 2024. "Crop water stress detection based on UAV remote sensing systems," Agricultural Water Management, Elsevier, vol. 303(C).
    8. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2022. "Effects of image spatial resolution and statistical scale on water stress estimation performance of MGDEXG: A new crop water stress indicator derived from RGB images," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Parra-López, Carlos & Ben Abdallah, Saker & Garcia-Garcia, Guillermo & Hassoun, Abdo & Trollman, Hana & Jagtap, Sandeep & Gupta, Sumit & Aït-Kaddour, Abderrahmane & Makmuang, Sureerat & Carmona-Torres, 2025. "Digital technologies for water use and management in agriculture: Recent applications and future outlook," Agricultural Water Management, Elsevier, vol. 309(C).
    10. Lixiran Yu & Hongfei Tao & Qiao Li & Hong Xie & Yan Xu & Aihemaiti Mahemujiang & Youwei Jiang, 2025. "Research on Machine Learning-Based Extraction and Classification of Crop Planting Information in Arid Irrigated Areas Using Sentinel-1 and Sentinel-2 Time-Series Data," Agriculture, MDPI, vol. 15(11), pages 1-29, May.
    11. Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
    12. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    13. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Vahidi, Milad & Shafian, Sanaz & Frame, William Hunter, 2025. "Depth-specific soil moisture estimation in vegetated corn fields using a canopy-informed model: A fusion of RGB-thermal drone data and machine learning," Agricultural Water Management, Elsevier, vol. 307(C).
    15. Sergio Vélez & Raquel Martínez-Peña & David Castrillo, 2023. "Beyond Vegetation: A Review Unveiling Additional Insights into Agriculture and Forestry through the Application of Vegetation Indices," J, MDPI, vol. 6(3), pages 1-16, July.
    16. Javier A. Quintana & Carlos Bordons & Sergio Esteban & Julian Delgado, 2025. "Hybrid Powerplant Design and Energy Management for UAVs: Enhancing Autonomy and Reducing Operational Costs," Energies, MDPI, vol. 18(12), pages 1-25, June.
    17. Hwanjo Chung & Seunghwan Wi & Byoung-Kwan Cho & Hoonsoo Lee, 2024. "Classification of Garlic ( Allium sativum L.) Crops by Fertilizer Differences Using Ground-Based Hyperspectral Imaging System," Agriculture, MDPI, vol. 14(8), pages 1-20, July.
    18. Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
    19. Lingfei Weng & Wentao Dou & Yejing Chen, 2023. "Study on the Coupling Effect of Agricultural Production, Road Construction, and Ecology: The Case for Cambodia," Agriculture, MDPI, vol. 13(4), pages 1-19, March.
    20. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2021. "The mean value of gaussian distribution of excess green index: A new crop water stress indicator," Agricultural Water Management, Elsevier, vol. 251(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.