IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423003864.html
   My bibliography  Save this article

Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice

Author

Listed:
  • Wu, Yinshan
  • Jiang, Jie
  • Zhang, Xiufeng
  • Zhang, Jiayi
  • Cao, Qiang
  • Tian, Yongchao
  • Zhu, Yan
  • Cao, Weixing
  • Liu, Xiaojun

Abstract

Real-timely monitoring of the crop water status can improve irrigation scheduling to increase water saving and enhance agricultural sustainability, whereas the canopy temperature measured by thermal imaging is an essential indicator for determining the rice water status. The primary goal of this study was to propose a new temperature index based on the temporal variance of the daily temperature and to develop the rice water status estimation model. Two field experiments involving two rice varieties and multi-irrigation regimes were conducted from 2019 to 2020. A thermal imaging camera was used to measure the canopy temperature from 8:00–16:00 at 2-hour intervals across all growth stages. Three plant water parameters, namely plant water content (PWC), canopy water content (CWC), and canopy equivalent water thickness (CEWT), were collected simultaneously. The results showed that canopy temperature and plant water parameters differed obviously among different irrigation treatments. The relative canopy temperature velocity (RCTV) was developed based on the temporal variance of the daily temperature, and the RCTV8–12 performed well in distinguishing different irrigation treatments and quantifying the rice water status. The coefficient of determination (R2) values of the exponential relationships between the optimal RCTV and plant water parameters reached 0.47 (PWC), 0.39 (CWC) and 0.18 (CEWT). The random forest model, which integrates the multi-temperature indices, achieved a good estimation for PWC (R2 = 0.78), CWC (R2 = 0.77), and CEWT (R2 = 0.64) across all growth stages. In summary, combining the multi-temperature indices derived from the thermal infrared imagery and machine learning algorithm can facilitate the non-destructive estimation of the rice water status and improve the precision irrigation schedule.

Suggested Citation

  • Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003864
    DOI: 10.1016/j.agwat.2023.108521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.