IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v313y2025ics0378377425001945.html
   My bibliography  Save this article

Correction of crop water deficit indicators based on time-lag effects for improved farmland water status assessment

Author

Listed:
  • Wang, Yujin
  • Zhang, Zhitao
  • Chen, Yinwen
  • Fan, Shaoshuai
  • Chen, Haiying
  • Bai, Xuqian
  • Yang, Ning
  • Tang, Zijun
  • Qian, Long
  • Mao, Zhengxuan
  • Zhang, Siying
  • Chen, Junying
  • Xiang, Youzhen

Abstract

Crop water deficit indicators such as crop water stress index (CWSI), actual crop evapotranspiration (ET), and stomatal conductance (gs) are widely utilized for soil water content (SWC) monitoring. However, time-lag effects between canopy temperature (Tc) and environmental factors can influence their correlation with SWC, thereby complicating the identification of the most reliable diagnostic indicator. This study conducted a two-year field experiment on winter wheat under four irrigation levels (80–95 %, 65–80 %, 50–65 %, and 40–50 % field capacity). Time-lag cross-correlation, time-lag mutual information, grey time-lag correlation analysis, time-lag Almon, and time-lag partial least squares (PLS) were applied to calculate the time-lag parameters. These time-lag parameters were subsequently used to correct the correlations between CWSI, ET, gs, and SWC. The indicator with the strongest correlation to SWC was selected and then predicted using four machine learning models. Results demonstrated that time-lag correction significantly enhanced the correlation between SWC and theoretical CWSI, empirical CWSI, gs, and ET, with increases of 0.15, 0.33, 0.11, and 0.21, respectively; Time-lag mutual information exhibited the highest effectiveness in correcting time-lag effects; The sudden decline in gs and the peak advancement in severe water stress treatments led to abrupt changes in time-lag parameters; The Convolutional Neural Network-Bidirectional Long Short-Term Memory-Adaptive Boosting model achieved the highest accuracy in predicting gs corrected by time-lag mutual information from 8:00–15:00 (R2=0.96). These results provided a theoretical foundation for accurately assessing soil moisture conditions in agricultural fields and contributed to advancing water conservation techniques in arid farmland.

Suggested Citation

  • Wang, Yujin & Zhang, Zhitao & Chen, Yinwen & Fan, Shaoshuai & Chen, Haiying & Bai, Xuqian & Yang, Ning & Tang, Zijun & Qian, Long & Mao, Zhengxuan & Zhang, Siying & Chen, Junying & Xiang, Youzhen, 2025. "Correction of crop water deficit indicators based on time-lag effects for improved farmland water status assessment," Agricultural Water Management, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s0378377425001945
    DOI: 10.1016/j.agwat.2025.109480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s0378377425001945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.