IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v218y2019icp158-164.html
   My bibliography  Save this article

Current and potential capabilities of UAS for crop water productivity in precision agriculture

Author

Listed:
  • Ezenne, G.I.
  • Jupp, Louise
  • Mantel, S.K.
  • Tanner, J.L.

Abstract

In order to feed growing populations under scare water resources, a suitable technology that improves crop water productivity (CWP) is crucial. Precision agriculture that utilizes digital techniques such as unmanned aerial systems (UAS) can play a significant role in improving CWP. CWP is an important indicator that quantifies the effect of agricultural water management. To improve CWP, implementation of suitable methods for early detection of crop water stress before irreversible damage on crops occurs, is vital. Conventionally, farmers have relied on in situ measurements of soil moisture and weather variables for detecting crop water status for irrigation scheduling. This method is time consuming and does not account for spatial and temporal variability associated with crop water status. Hence, the aim of this study is to give an overview of the current and potential capabilities of UAS for crop water productivity in precision agriculture. Identified in this study are the factors as well as the technology that can improve CWP. UAS thermal remote sensing is found to be the most suitable technology for monitoring and assessing crop water status using certain indices. Determining a crop water stress index (CWSI) from thermal imagery has the potential to detect instantaneous variations of water status. CWSI obtained from UAS thermal imaging camera can be adapted for real-time irrigation scheduling for maximum crop water productivity.

Suggested Citation

  • Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
  • Handle: RePEc:eee:agiwat:v:218:y:2019:i:c:p:158-164
    DOI: 10.1016/j.agwat.2019.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418318298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiménez-Bello, M.A. & Ballester, C. & Castel, J.R. & Intrigliolo, D.S., 2011. "Development and validation of an automatic thermal imaging process for assessing plant water status," Agricultural Water Management, Elsevier, vol. 98(10), pages 1497-1504, August.
    2. O'Shaughnessy, S.A. & Evett, S.R., 2010. "Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton," Agricultural Water Management, Elsevier, vol. 97(9), pages 1310-1316, September.
    3. Gago, J. & Douthe, C. & Coopman, R.E. & Gallego, P.P. & Ribas-Carbo, M. & Flexas, J. & Escalona, J. & Medrano, H., 2015. "UAVs challenge to assess water stress for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 153(C), pages 9-19.
    4. Igbadun, Henry E. & Mahoo, Henry F. & Tarimo, Andrew K.P.R. & Salim, Baanda A., 2006. "Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of the Great Ruaha River Basin, Tanzania," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 141-150, September.
    5. Léllis, B.C. & Carvalho, D.F. & Martínez-Romero, A. & Tarjuelo, J.M. & Domínguez, A., 2017. "Effective management of irrigation water for carrot under constant and optimized regulated deficit irrigation in Brazil," Agricultural Water Management, Elsevier, vol. 192(C), pages 294-305.
    6. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Trout, Thomas J., 2016. "Estimating maize water stress by standard deviation of canopy temperature in thermal imagery," Agricultural Water Management, Elsevier, vol. 177(C), pages 400-409.
    7. Santesteban, L.G. & Di Gennaro, S.F. & Herrero-Langreo, A. & Miranda, C. & Royo, J.B. & Matese, A., 2017. "High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard," Agricultural Water Management, Elsevier, vol. 183(C), pages 49-59.
    8. Alessandro Matese & Salvatore Filippo Di Gennaro, 2018. "Practical Applications of a Multisensor UAV Platform Based on Multispectral, Thermal and RGB High Resolution Images in Precision Viticulture," Agriculture, MDPI, vol. 8(7), pages 1-13, July.
    9. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    10. Araya, A. & Kisekka, I. & Gowda, P.H. & Prasad, P.V.V., 2018. "Grain sorghum production functions under different irrigation capacities," Agricultural Water Management, Elsevier, vol. 203(C), pages 261-271.
    11. Egea, Gregorio & Padilla-Díaz, Carmen M. & Martinez-Guanter, Jorge & Fernández, José E. & Pérez-Ruiz, Manuel, 2017. "Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 210-221.
    12. Barrios-Masias, Felipe H. & Jackson, Louise E., 2016. "Increasing the effective use of water in processing tomatoes through alternate furrow irrigation without a yield decrease," Agricultural Water Management, Elsevier, vol. 177(C), pages 107-117.
    13. Pou, Alícia & Diago, Maria P. & Medrano, Hipólito & Baluja, Javier & Tardaguila, Javier, 2014. "Validation of thermal indices for water status identification in grapevine," Agricultural Water Management, Elsevier, vol. 134(C), pages 60-72.
    14. García-Tejero, I.F. & Costa, J.M. & Egipto, R. & Durán-Zuazo, V.H. & Lima, R.S.N. & Lopes, C.M. & Chaves, M.M., 2016. "Thermal data to monitor crop-water status in irrigated Mediterranean viticulture," Agricultural Water Management, Elsevier, vol. 176(C), pages 80-90.
    15. DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
    16. O'Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D. & Howell, Terry A., 2012. "A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum," Agricultural Water Management, Elsevier, vol. 107(C), pages 122-132.
    17. Kullberg, Emily G. & DeJonge, Kendall C. & Chávez, José L., 2017. "Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients," Agricultural Water Management, Elsevier, vol. 179(C), pages 64-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Jiang & Jizhi Li & Hongyun Si & Yangyue Su, 2022. "The Impact of the Digital Economy on Agricultural Green Development: Evidence from China," Agriculture, MDPI, vol. 12(8), pages 1-22, July.
    2. Alexandros Sotirios Anifantis & Salvatore Camposeo & Gaetano Alessandro Vivaldi & Francesco Santoro & Simone Pascuzzi, 2019. "Comparison of UAV Photogrammetry and 3D Modeling Techniques with Other Currently Used Methods for Estimation of the Tree Row Volume of a Super-High-Density Olive Orchard," Agriculture, MDPI, vol. 9(11), pages 1-14, October.
    3. Grados, D. & Reynarfaje, X. & Schrevens, E., 2020. "A methodological approach to assess canopy NDVI–based tomato dynamics under irrigation treatments," Agricultural Water Management, Elsevier, vol. 240(C).
    4. Zhou, Yongcai & Lao, Congcong & Yang, Yalong & Zhang, Zhitao & Chen, Haiying & Chen, Yinwen & Chen, Junying & Ning, Jifeng & Yang, Ning, 2021. "Diagnosis of winter-wheat water stress based on UAV-borne multispectral image texture and vegetation indices," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Aster Tesfaye Hordofa & Olkeba Tolessa Leta & Tena Alamirew & Abebe Demissie Chukalla, 2022. "Response of Winter Wheat Production to Climate Change in Ziway Lake Basin," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    6. Nathan Felipe da Silva Caldana & Pablo Ricardo Nitsche & Alan Carlos Martelócio & Anderson Paulo Rudke & Geovanna Cristina Zaro & Luiz Gustavo Batista Ferreira & Paulo Vicente Contador Zaccheo & Sergi, 2019. "Agroclimatic Risk Zoning of Avocado ( Persea americana ) in the Hydrographic Basin of Paraná River III, Brazil," Agriculture, MDPI, vol. 9(12), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    2. Apolo-Apolo, O.E. & Martínez-Guanter, J. & Pérez-Ruiz, M. & Egea, G., 2020. "Design and assessment of new artificial reference surfaces for real time monitoring of crop water stress index in maize," Agricultural Water Management, Elsevier, vol. 240(C).
    3. García-Tejero, I.F. & Rubio, A.E. & Viñuela, I. & Hernández, A & Gutiérrez-Gordillo, S & Rodríguez-Pleguezuelo, C.R. & Durán-Zuazo, V.H., 2018. "Thermal imaging at plant level to assess the crop-water status in almond trees (cv. Guara) under deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 208(C), pages 176-186.
    4. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    6. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    7. Ihuoma, Samuel O. & Madramootoo, Chandra A., 2019. "Crop reflectance indices for mapping water stress in greenhouse grown bell pepper," Agricultural Water Management, Elsevier, vol. 219(C), pages 49-58.
    8. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2022. "Effects of image spatial resolution and statistical scale on water stress estimation performance of MGDEXG: A new crop water stress indicator derived from RGB images," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Bhatti, Sandeep & Heeren, Derek M. & Evett, Steven R. & O’Shaughnessy, Susan A. & Rudnick, Daran R. & Franz, Trenton E. & Ge, Yufeng & Neale, Christopher M.U., 2022. "Crop response to thermal stress without yield loss in irrigated maize and soybean in Nebraska," Agricultural Water Management, Elsevier, vol. 274(C).
    10. Anzhen Qin & Dongfeng Ning & Zhandong Liu & Sen Li & Ben Zhao & Aiwang Duan, 2021. "Determining Threshold Values for a Crop Water Stress Index-Based Center Pivot Irrigation with Optimum Grain Yield," Agriculture, MDPI, vol. 11(10), pages 1-16, October.
    11. Colaizzi, Paul D. & O’Shaughnessy, Susan A. & Evett, Steve R. & Mounce, Ryan B., 2017. "Crop evapotranspiration calculation using infrared thermometers aboard center pivots," Agricultural Water Management, Elsevier, vol. 187(C), pages 173-189.
    12. de Almeida, Ailson Maciel & Coelho, Rubens Duarte & da Silva Barros, Timóteo Herculino & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto & Moreno-Pizani, Maria Alejandra & Farias-Ram, 2022. "Water productivity and canopy thermal response of pearl millet subjected to different irrigation levels," Agricultural Water Management, Elsevier, vol. 272(C).
    13. Drechsler, Kelley & Kisekka, Isaya & Upadhyaya, Shrinivasa, 2019. "A comprehensive stress indicator for evaluating plant water status in almond trees," Agricultural Water Management, Elsevier, vol. 216(C), pages 214-223.
    14. Ramírez-Cuesta, J.M. & Ortuño, M.F. & Gonzalez-Dugo, V. & Zarco-Tejada, P.J. & Parra, M. & Rubio-Asensio, J.S. & Intrigliolo, D.S., 2022. "Assessment of peach trees water status and leaf gas exchange using on-the-ground versus airborne-based thermal imagery," Agricultural Water Management, Elsevier, vol. 267(C).
    15. Costa, J.M. & Egipto, R. & Sánchez-Virosta, A. & Lopes, C.M. & Chaves, M.M., 2019. "Canopy and soil thermal patterns to support water and heat stress management in vineyards," Agricultural Water Management, Elsevier, vol. 216(C), pages 484-496.
    16. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    17. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    18. Katimbo, Abia & Rudnick, Daran R. & Liang, Wei-zhen & DeJonge, Kendall C. & Lo, Tsz Him & Franz, Trenton E. & Ge, Yufeng & Qiao, Xin & Kabenge, Isa & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Two source energy balance maize evapotranspiration estimates using close-canopy mobile infrared sensors and upscaling methods under variable water stress conditions," Agricultural Water Management, Elsevier, vol. 274(C).
    19. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2021. "The mean value of gaussian distribution of excess green index: A new crop water stress indicator," Agricultural Water Management, Elsevier, vol. 251(C).
    20. Cucci, Giovanna & Lacolla, Giovanni & Boari, Francesca & Mastro, Mario Alberto & Cantore, Vito, 2019. "Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 118-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:218:y:2019:i:c:p:158-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.