IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Development and validation of an automatic thermal imaging process for assessing plant water status

Listed author(s):
  • Jiménez-Bello, M.A.
  • Ballester, C.
  • Castel, J.R.
  • Intrigliolo, D.S.
Registered author(s):

    Leaf temperature is a physiological trait that can be used for monitoring plant water status. Nowadays, by means of thermography, canopy temperature can be remotely determined. In this sense, it is crucial to automatically process the images. In the present work, a methodology for the automatic analysis of frontal images taken on individual trees was developed. The procedure can be used when cameras take at the same time thermal and visible scenes, so it is not necessary to reference the images. In this way, during the processing in batch, no operator participated. The procedure was developed by means of a non supervised classification of the visible image from which the presence of sky and soil could be detected. In case of existence, a mask was performed for the extraction of intermediate pixels to calculate canopy temperature by means of the thermal image. At the same time, sunlit and shady leaves could be detected and isolated. Thus, the procedure allowed to separately determine canopy temperature either of the more exposed part of the canopy or of the shaded portion. The methodology developed was validated using images taken in several regulated deficit irrigation trials in Persimmon and two citrus cultivars (Clementina de Nules and Navel Lane-Late). Overall, results indicated that similar canopy temperatures were calculated either by means of the automatic process or the manual procedure. The procedure developed allows to drastically reduce the time needed for image analysis also considering that no operator participation was required. This tool will facilitate further investigations in course for assessing the feasibility of thermography for detecting plant water status in woody perennial crops with discontinuous canopies. Preliminary results reported indicate that the type of crop evaluated has an important influence in the results obtained from thermographic imagery. Thus, in Persimmon trees there were good correlations between canopy temperature and plant water status while, in Clementina de Nules and Navel Lane-Late citrus cultivars canopy temperature differences among trees could not be related with tree-to-tree variations in plant water status.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Agricultural Water Management.

    Volume (Year): 98 (2011)
    Issue (Month): 10 (August)
    Pages: 1497-1504

    in new window

    Handle: RePEc:eee:agiwat:v:98:y:2011:i:10:p:1497-1504
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Badal, E. & Buesa, I. & Guerra, D. & Bonet, L. & Ferrer, P. & Intrigliolo, D.S., 2010. "Maximum diurnal trunk shrinkage is a sensitive indicator of plant water, stress in Diospyros kaki (Persimmon) trees," Agricultural Water Management, Elsevier, vol. 98(1), pages 143-147, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:10:p:1497-1504. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.