IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i18p8219-d1748179.html
   My bibliography  Save this article

Drought Propagation and Risk Assessment in the Naoli River Basin Based on the SWAT-PLUS Model and Copula Functions

Author

Listed:
  • Tao Liu

    (School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China
    Heilongjiang Provincial Water Resources Research Institute, Harbin 100050, China)

  • Zhenjiang Si

    (School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China)

  • Yusu Zhao

    (School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China)

  • Jing Wang

    (School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China
    Heilongjiang Provincial Water Resources Research Institute, Harbin 100050, China)

  • Yan Liu

    (Heilongjiang Provincial Water Resources Research Institute, Harbin 100050, China)

  • Longfei Wang

    (Heilongjiang Provincial Water Resources Research Institute, Harbin 100050, China)

Abstract

With the intensification of global climate change, extreme weather events increasingly threaten water resources and agricultural systems. This study focuses on the Naoli River Basin, employing the Standardized Precipitation Actual Evapotranspiration Index (SPAEI), the Standardized Runoff Index (SRI), and the Standardized Surface Moisture Index (SSMI) to assess the spatiotemporal variability of meteorological, hydrological, and agricultural droughts. Drought events are identified based on travel time theory, and joint distributions of drought characteristics are modeled using optimized two- and three-dimensional copula functions. Lagged correlation and Bayesian conditional probability analyses are used to explore drought propagation processes. Key findings include (1) the SWAT model showed strong runoff simulation performance ( R 2 > 0.75, NSE > 0.97), while the PLUS model achieved high land use simulation accuracy (overall accuracy > 0.93, Kappa > 0.85); (2) future projections suggest continued forest expansion and farmland decline, with water areas increasing under SSP245 and urban areas expanding under SSP585; (3) five CMIP6 models with high skill (r = 0.80, RMSE = 26.15) were selected via a Taylor diagram for scenario simulation; (4) copula-based joint drought probabilities vary temporally, with meteorological drought risks increasing under long-term moderate-emission scenarios, while hydrological and agricultural droughts show contrasting trends; (5) and under extreme meteorological drought, the conditional probability of extreme agricultural drought doubles from 0.12 (SSP245) to 0.24 (SSP585), indicating heightened vulnerability under high-emission pathways. These results offer critical insights for regional drought risk assessment and adaptive management under future climate scenarios.

Suggested Citation

  • Tao Liu & Zhenjiang Si & Yusu Zhao & Jing Wang & Yan Liu & Longfei Wang, 2025. "Drought Propagation and Risk Assessment in the Naoli River Basin Based on the SWAT-PLUS Model and Copula Functions," Sustainability, MDPI, vol. 17(18), pages 1-28, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8219-:d:1748179
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/18/8219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/18/8219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ling Zhang & Zhuotong Nan & Wenjun Yu & Yingchun Ge, 2015. "Modeling Land-Use and Land-Cover Change and Hydrological Responses under Consistent Climate Change Scenarios in the Heihe River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4701-4717, October.
    2. Zhengmao Liu & Xianguo Lu & Sun Yonghe & Chen Zhike & Haitao Wu & Yanbo Zhao, 2012. "Hydrological Evolution of Wetland in Naoli River Basin and its Driving Mechanism," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1455-1475, April.
    3. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Xuefeng Bai & Bin Wang & Ying Qi, 2021. "The Effect of Returning Farmland to Grassland and Coniferous Forest on Watershed Runoff—A Case Study of the Naoli River Basin in Heilongjiang Province, China," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    5. Ding, Yibo & Gong, Xinglong & Xing, Zhenxiang & Cai, Huanjie & Zhou, Zhaoqiang & Zhang, Doudou & Sun, Peng & Shi, Haiyun, 2021. "Attribution of meteorological, hydrological and agricultural drought propagation in different climatic regions of China," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Christian Tulungen & Soni M. Pradhanang, 2024. "Assessment of Climate Change Effects of Drought Conditions Using the Soil and Water Assessment Tool," Agriculture, MDPI, vol. 14(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Cuiping & Liu, Changhong & Xing, Xuguang & Ma, Xiaoyi, 2025. "Predicting the risk and trigger thresholds for propagation of meteorological droughts to agricultural droughts in China based on Copula-Bayesian model," Agricultural Water Management, Elsevier, vol. 313(C).
    2. Yan Wang & Yonghong Xu & Lei Wu & Bingnan Ruan & Jiawei Guo & Bailin Du, 2025. "Identification of critical source areas and delineation of management subzones of non-point source pollution in Jing River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 7569-7594, March.
    3. Xu, Yingying & Lü, Haishen & Yagci, Ali Levent & Zhu, Yonghua & Liu, Di & Wang, Qimeng & Xu, Haiting & Pan, Ying & Su, Jianbin, 2024. "Influence of groundwater on the propagation of meteorological drought to agricultural drought during crop growth periods: A case study in Huaibei Plain," Agricultural Water Management, Elsevier, vol. 305(C).
    4. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Qiuju Wu & Renyi Yang & Zisheng Yang, 2022. "A Study on the Rationality of Land Use Change in the Dianchi Basin during the Last 40 Years under the Background of Lake Revolution," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    6. Yixin Sun & Qiang Zhang & Wenlong Song & Senlin Tang & Vijay P. Singh, 2025. "Hydrological responses of three gorges reservoir region (China) to climate and land use and land cover changes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1505-1530, January.
    7. Fondevilla, Cristian & Àngels Colomer, M. & Fillat, Federico & Tappeiner, Ulrike, 2016. "Using a new PDP modelling approach for land-use and land-cover change predictions: A case study in the Stubai Valley (Central Alps)," Ecological Modelling, Elsevier, vol. 322(C), pages 101-114.
    8. Amogh Gyaneshwar & Anirudh Mishra & Utkarsh Chadha & P. M. Durai Raj Vincent & Venkatesan Rajinikanth & Ganapathy Pattukandan Ganapathy & Kathiravan Srinivasan, 2023. "A Contemporary Review on Deep Learning Models for Drought Prediction," Sustainability, MDPI, vol. 15(7), pages 1-31, April.
    9. Anna Porębska & Krzysztof Muszyński & Izabela Godyń & Kinga Racoń-Leja, 2023. "City and Water Risk: Accumulated Runoff Mapping Analysis as a Tool for Sustainable Land Use Planning," Land, MDPI, vol. 12(7), pages 1-21, July.
    10. Mudassar Iqbal & Jun Wen & Muhammad Masood & Muhammad Umer Masood & Muhammad Adnan, 2022. "Impacts of Climate and Land-Use Changes on Hydrological Processes of the Source Region of Yellow River, China," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    11. Zhan, Cun & Liang, Chuan & Zhao, Lu & Jiang, Shouzheng & Niu, Kaijie & Zhang, Yaling, 2023. "Multifractal characteristics of multiscale drought in the Yellow River Basin, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    12. Qi, Zixuan & Ye, Yuchen & Sun, Lian & Yuan, Chaoxia & Cai, Yanpeng & Xie, Yulei & Cheng, Guanhui & Zhang, Pingping, 2025. "Development of an indicator system for solar-induced chlorophyll fluorescence monitoring to enhance early warning of flash drought," Agricultural Water Management, Elsevier, vol. 312(C).
    13. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    14. Qianchuan Mi & Chuanyou Ren & Yanhua Wang & Xining Gao & Limin Liu & Yue Li, 2023. "A robust ensemble drought index: construction and assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1139-1159, March.
    15. Zhenliang Yin & Qi Feng & Linshan Yang & Xiaohu Wen & Jianhua Si & Songbing Zou, 2017. "Long Term Quantification of Climate and Land Cover Change Impacts on Streamflow in an Alpine River Catchment, Northwestern China," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    16. Qin, Nianxiu & Lu, Qinqin & Fu, Guobin & Wang, Junneng & Fei, Kai & Gao, Liang, 2023. "Assessing the drought impact on sugarcane yield based on crop water requirements and standardized precipitation evapotranspiration index," Agricultural Water Management, Elsevier, vol. 275(C).
    17. Ying Zhang & Ling Zhang & Jinliang Hou & Juan Gu & Chunlin Huang, 2017. "Development of an Evapotranspiration Data Assimilation Technique for Streamflow Estimates: A Case Study in a Semi-Arid Region," Sustainability, MDPI, vol. 9(10), pages 1-21, September.
    18. Liu Liu & Zezhong Guo & Guanhua Huang & Ruotong Wang, 2019. "Water Productivity Evaluation under Multi-GCM Projections of Climate Change in Oases of the Heihe River Basin, Northwest China," IJERPH, MDPI, vol. 16(10), pages 1-17, May.
    19. Zhang, Qi & Yu, Xin & Qiu, Rangjian & Liu, Zhongxian & Yang, Zaiqiang, 2022. "Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model," Agricultural Water Management, Elsevier, vol. 273(C).
    20. Guofeng Wang & Nan Lin & Xiaoxue Zhou & Zhihui Li & Xiangzheng Deng, 2018. "Three-Stage Data Envelopment Analysis of Agricultural Water Use Efficiency: A Case Study of the Heihe River Basin," Sustainability, MDPI, vol. 10(2), pages 1-17, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8219-:d:1748179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.