IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i3d10.1007_s10668-023-04206-9.html
   My bibliography  Save this article

Identification of critical source areas and delineation of management subzones of non-point source pollution in Jing River Basin

Author

Listed:
  • Yan Wang

    (Northwest A&F University
    Northwest A&F University)

  • Yonghong Xu

    (Ministry of Water Resources)

  • Lei Wu

    (Northwest A&F University
    Northwest A&F University
    Northwest A&F University)

  • Bingnan Ruan

    (Northwest A&F University
    Northwest A&F University)

  • Jiawei Guo

    (Northwest A&F University
    Northwest A&F University)

  • Bailin Du

    (Northwest A&F University
    Northwest A&F University)

Abstract

Critical source area (CSAs) identification and subzone delineation could aid in streamlining watershed management. However, how to build a comprehensive evaluation index system based on the identification of CSAs is the key to solving the problem of management zoning, and this issue has not been fully reported yet. We applied the soil and water assessment tool to investigate non-point source (NPS) pollution for two periods from 1967 to 1990 and from 2000 to 2020 in the Jing River Basin, identify the CSAs in each period using four methods, and delineate the watershed management subzones using K-means cluster analysis. Results showed that, from 1970 to 1990, the annual average sediment yield in the basin was 46.91 Mg/ha/year, while from 2000 to 2020, it decreased by 53.24% to 22.01 Mg/ha/year. Between 2000 and 2020, the average load of total phosphorous (TP) pollution was 0.168 kg/ha/year, which was around 92.1% less than that from 1967 to 1990. Although the areas with the most severe total nitrogen (TN) load (15–18 kg/ha/year) had been treated, the pollution intensity was still relatively serious, and there was a trend of large-scale diffusion. The comprehensive evaluation index could effectively identify CSAs under the triple superposition of sediment yield, TN, and TP, which could be defined as one of the important indicators affecting the management subzones of the Jing River Basin. The watershed was divided into four different management zones, namely: northern loess hills and ravines ecological restoration zone, the priority management subzone in the middle west, the middle-eastern forested ecological conservation area, and the southeastern pollution control zone. This study could provide reference and specific directions for decision makers in efficient and sustainable watershed NPS pollution management at the scale of sub-watershed and management subzone.

Suggested Citation

  • Yan Wang & Yonghong Xu & Lei Wu & Bingnan Ruan & Jiawei Guo & Bailin Du, 2025. "Identification of critical source areas and delineation of management subzones of non-point source pollution in Jing River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 7569-7594, March.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:3:d:10.1007_s10668-023-04206-9
    DOI: 10.1007/s10668-023-04206-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-04206-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-04206-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avay Risal & Prem B. Parajuli, 2022. "Evaluation of the Impact of Best Management Practices on Streamflow, Sediment and Nutrient Yield at Field and Watershed Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1093-1105, February.
    2. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Niraula, Rewati & Kalin, Latif & Srivastava, Puneet & Anderson, Christopher J., 2013. "Identifying critical source areas of nonpoint source pollution with SWAT and GWLF," Ecological Modelling, Elsevier, vol. 268(C), pages 123-133.
    4. Xuefeng Bai & Bin Wang & Ying Qi, 2021. "The Effect of Returning Farmland to Grassland and Coniferous Forest on Watershed Runoff—A Case Study of the Naoli River Basin in Heilongjiang Province, China," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    5. Özcan, Zeynep & Kentel, Elçin & Alp, Emre, 2017. "Evaluation of the best management practices in a semi-arid region with high agricultural activity," Agricultural Water Management, Elsevier, vol. 194(C), pages 160-171.
    6. Jiyeon Choi & Baekyung Park & Jinsun Kim & Soyoung Lee & Jichul Ryu & Kyunghyun Kim & Yongseok Kim, 2021. "Determination of NPS Pollutant Unit Loads from Different Landuses," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    7. Yuepeng Liu & Chuanfeng Yang & Xinyang Yu & Mengwen Wang & Wei Qi, 2021. "Monitoring the Landscape Pattern and Characteristics of Non-Point Source Pollution in a Mountainous River Basin," IJERPH, MDPI, vol. 18(21), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renfang Chang & Yunqi Wang & Huifang Liu & Zhen Wang & Lei Ma & Jiancong Zhang & Junjie Li & Zhiyi Yan & Yihui Zhang & Danqing Li, 2024. "Optimizing Non-Point Source Pollution Management: Evaluating Cost-Effective Strategies in a Small Watershed within the Three Gorges Reservoir Area, China," Land, MDPI, vol. 13(6), pages 1-21, May.
    2. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Qiuju Wu & Renyi Yang & Zisheng Yang, 2022. "A Study on the Rationality of Land Use Change in the Dianchi Basin during the Last 40 Years under the Background of Lake Revolution," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    4. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    5. Junfeng Dai & Linyan Pan & Yan Deng & Zupeng Wan & Rui Xia, 2025. "Modified SWAT Model for Agricultural Watershed in Karst Area of Southwest China," Agriculture, MDPI, vol. 15(2), pages 1-18, January.
    6. Anna Porębska & Krzysztof Muszyński & Izabela Godyń & Kinga Racoń-Leja, 2023. "City and Water Risk: Accumulated Runoff Mapping Analysis as a Tool for Sustainable Land Use Planning," Land, MDPI, vol. 12(7), pages 1-21, July.
    7. Caroline Petit & Audrey Vincent & Philippe Fleury & Amandine Durpoix & Fabienne Barataud, 2016. "Protecting Water from Agricultural Diffuse Pollutions: Between Action Territories and Hydrogeological Demarcation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 295-313, January.
    8. Zeng, X.T. & Huang, G.H. & Chen, H.L. & Li, Y.P. & Kong, X.M. & Fan, Y.R., 2016. "A simulation-based water-environment management model for regional sustainability in compound wetland ecosystem under multiple uncertainties," Ecological Modelling, Elsevier, vol. 334(C), pages 60-77.
    9. Jian Sha & Zeli Li & Dennis Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.
    10. Puertes, Cristina & Bautista, Inmaculada & Lidón, Antonio & Francés, Félix, 2021. "Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain)," Agricultural Systems, Elsevier, vol. 188(C).
    11. Wu, Lei & Liu, Xia & Chen, Junlai & Li, Jinfeng & Yu, Yang & Ma, Xiaoyi, 2022. "Efficiency assessment of best management practices in sediment reduction by investigating cost-effective tradeoffs," Agricultural Water Management, Elsevier, vol. 265(C).
    12. Liu, Wenying & Li, Sisi & Shen, Wangzheng & Zhuang, Yanhua & Li, Xiaodong & Ling, Feng & Zhang, Liang, 2024. "Small water bodies influence river water quality in agricultural watersheds," Agricultural Water Management, Elsevier, vol. 304(C).
    13. Jayoung Koo & Jonggun Kim & Jicheol Ryu & Dong-Suk Shin & Seoro Lee & Min-Kyeong Kim & Jaehak Jeong & Kyoung-Jae Lim, 2022. "Development of Novel QAPEX Analysis System Using Open-Source GIS," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    14. Zohreh Hashemi Aslani & Vahid Nasiri & Carmen Maftei & Ashok Vaseashta, 2023. "Synergetic Integration of SWAT and Multi-Objective Optimization Algorithms for Evaluating Efficiencies of Agricultural Best Management Practices to Improve Water Quality," Land, MDPI, vol. 12(2), pages 1-20, February.
    15. Akanksha Balha & Amit Singh & Suneel Pandey & Reetesh Kumar & Javed Mallick & Chander Kumar Singh, 2023. "Assessing the Impact of Land-Use Dynamics to Predict the Changes in Hydrological Variables Using Effective Impervious Area (EIA)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3999-4014, August.
    16. Jian Sha & Zeli Li & Dennis P. Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.
    17. Yohana G. Jimenez & Ezequiel Aráoz, 2024. "Modeling the Role of Novel Ecosystems in Runoff and Soil Protection: Native and Non-native Subtropical Montane Forests," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3837-3852, August.
    18. Leh, Mansoor D.K. & Sharpley, Andrew N. & Singh, Gurdeep & Matlock, Marty D., 2018. "Assessing the impact of the MRBI program in a data limited Arkansas watershed using the SWAT model," Agricultural Water Management, Elsevier, vol. 202(C), pages 202-219.
    19. Dipesh Nepal & Prem B. Parajuli, 2022. "Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT," Agriculture, MDPI, vol. 12(4), pages 1-19, April.
    20. Caroline Petit & Audrey Vincent & Philippe Fleury & Amandine Durpoix & Fabienne Barataud, 2016. "Protecting Water from Agricultural Diffuse Pollutions: Between Action Territories and Hydrogeological Demarcation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 295-313, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:3:d:10.1007_s10668-023-04206-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.