IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v194y2017icp160-171.html
   My bibliography  Save this article

Evaluation of the best management practices in a semi-arid region with high agricultural activity

Author

Listed:
  • Özcan, Zeynep
  • Kentel, Elçin
  • Alp, Emre

Abstract

The arid and semi-arid regions with water scarcity are vulnerable to several stressors such as urbanization, high water demand created by agricultural and industrial activities, point and non-point pollution sources, and climate change. Hence, proactive policies and sustainable water management strategies that are based on decision support systems are crucial in arid and semi-arid regions. Because of large expenses and implementation difficulties associated with the diffuse pollution abatement plans, many authorities are hesitant to initiate, especially those that may present a financial burden on population. Lake Mogan, a shallow lake, is located in a semi-arid region dominated by dry agricultural activities and has been in eutrophic state for the past 20 years. There has been several management alternatives suggested to improve the water quality in Lake Mogan and one of the alternative is the application of BMPs that include fertilizer management, conservation/no tillage, contouring, and terracing to reduce the amount of diffuse source pollutants. In this study, Soil and Water Assessment Tool (SWAT) Model is applied to evaluate the effectiveness of agricultural best management practices (BMPs) in the Lake Mogan watershed located in a semi-arid region. The most effective BMP scenario was found as the one in which three individual BMP scenarios (30% fertilizer reduction, no tillage, and terracing) were combined. With this scenario average annual load reductions of 9.3%, 8.6%, 8.0%, and 11.1% were achieved in sediment, nitrate, total nitrogen, and total phosphorus, respectively. Even with the most effective BMP strategy, high levels of nutrient reduction will not be achieved since non-irrigated agriculture and intermittent low-flow streams accounts majority of the study area. The outcomes suggest integrated solutions should be developed to improve water quality in Lake Mogan. It is aimed that this study will aid decision makers to implement effective best management practices in watersheds showing similar characteristics (i.e. topographical, hydrologic processes, LULC (Land use land cover) characteristics, agricultural activities, meteorological etc.) with the study area.

Suggested Citation

  • Özcan, Zeynep & Kentel, Elçin & Alp, Emre, 2017. "Evaluation of the best management practices in a semi-arid region with high agricultural activity," Agricultural Water Management, Elsevier, vol. 194(C), pages 160-171.
  • Handle: RePEc:eee:agiwat:v:194:y:2017:i:c:p:160-171
    DOI: 10.1016/j.agwat.2017.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417303025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pushpa Tuppad & Narayanan Kannan & Raghavan Srinivasan & Colleen Rossi & Jeffrey Arnold, 2010. "Simulation of Agricultural Management Alternatives for Watershed Protection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3115-3144, September.
    2. Prakash Kaini & Kim Artita & John Nicklow, 2012. "Optimizing Structural Best Management Practices Using SWAT and Genetic Algorithm to Improve Water Quality Goals," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1827-1845, May.
    3. Parajuli, P.B. & Jayakody, P. & Sassenrath, G.F. & Ouyang, Y., 2016. "Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin," Agricultural Water Management, Elsevier, vol. 168(C), pages 112-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Puertes, Cristina & Bautista, Inmaculada & Lidón, Antonio & Francés, Félix, 2021. "Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain)," Agricultural Systems, Elsevier, vol. 188(C).
    3. Ahn, Sora & Abudu, Shalamu & Sheng, Zhuping & Mirchi, Ali, 2018. "Hydrologic impacts of drought-adaptive agricultural water management in a semi-arid river basin: Case of Rincon Valley, New Mexico," Agricultural Water Management, Elsevier, vol. 209(C), pages 206-218.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wallace, Carlington W. & Flanagan, Dennis C. & Engel, Bernard A., 2017. "Quantifying the effects of conservation practice implementation on predicted runoff and chemical losses under climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 51-65.
    2. Jinkang Du & Hanyi Rui & Tianhui Zuo & Qian Li & Dapeng Zheng & Ailing Chen & Youpeng Xu & C.-Y. Xu, 2013. "Hydrological Simulation by SWAT Model with Fixed and Varied Parameterization Approaches Under Land Use Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2823-2838, June.
    3. Dipesh Nepal & Prem B. Parajuli, 2022. "Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT," Agriculture, MDPI, vol. 12(4), pages 1-19, April.
    4. Everton Rocha & Maria Calijuri & Aníbal Santiago & Leonardo Assis & Luna Alves, 2012. "The Contribution of Conservation Practices in Reducing Runoff, Soil Loss, and Transport of Nutrients at the Watershed Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3831-3852, October.
    5. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Xiaojing Ni & Prem B. Parajuli & Ying Ouyang, 2020. "Assessing Agriculture Conservation Practice Impacts on Groundwater Levels at Watershed Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1553-1566, March.
    7. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.
    8. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.
    9. Mojtaba Moravej & Seyed-Mohammad Hosseini-Moghari, 2016. "Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3389-3407, August.
    10. B. Sarma & A. Sarma & V. Singh, 2013. "Optimal Ecological Management Practices (EMPs) for Minimizing the Impact of Climate Change and Watershed Degradation Due to Urbanization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4069-4082, September.
    11. Jiao Liu & Tie Liu & Anming Bao & Philippe Maeyer & Xianwei Feng & Scott N. Miller & Xi Chen, 2016. "Assessment of Different Modelling Studies on the Spatial Hydrological Processes in an Arid Alpine Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1757-1770, March.
    12. Ni, Xiaojing & Parajuli, Prem B., 2018. "Evaluation of the impacts of BMPs and tailwater recovery system on surface and groundwater using satellite imagery and SWAT reservoir function," Agricultural Water Management, Elsevier, vol. 210(C), pages 78-87.
    13. V. M. Jayasooriya & A. W. M. Ng & S. Muthukumaran & B. J. C. Perera, 2016. "Optimal Sizing of Green Infrastructure Treatment Trains for Stormwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5407-5420, November.
    14. Gottshall, Bryan & Paudel, Krishna P., 2013. "Assessing the Efficiency of Alternative Best Management Practices to Reduce Nonpoint Source Pollution in the Broiler Production Region of Louisiana," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150463, Agricultural and Applied Economics Association.
    15. Ricci, Giovanni Francesco & D’Ambrosio, Ersilia & De Girolamo, Anna Maria & Gentile, Francesco, 2022. "Efficiency and feasibility of Best Management Practices to reduce nutrient loads in an agricultural river basin," Agricultural Water Management, Elsevier, vol. 259(C).
    16. Jeong, Hanseok & Adamowski, Jan, 2016. "A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale," Agricultural Water Management, Elsevier, vol. 171(C), pages 89-107.
    17. Dai, C. & Cai, Y.P. & Ren, W. & Xie, Y.F. & Guo, H.C., 2016. "Identification of optimal placements of best management practices through an interval-fuzzy possibilistic programming model," Agricultural Water Management, Elsevier, vol. 165(C), pages 108-121.
    18. Pignalosa, Antonio & Silvestri, Nicola & Pugliese, Francesco & Corniello, Alfonso & Gerundo, Carlo & Del Seppia, Nicola & Lucchesi, Massimo & Coscini, Nicola & De Paola, Francesco & Giugni, Maurizio, 2022. "Long-term simulations of Nature-Based Solutions effects on runoff and soil losses in a flat agricultural area within the catchment of Lake Massaciuccoli (Central Italy)," Agricultural Water Management, Elsevier, vol. 273(C).
    19. Q. Yang & L. He & H. Lu, 2013. "A Multiobjective Optimisation Model for Groundwater Remediation Design at Petroleum Contaminated Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2411-2427, May.
    20. Amaya Novo & Joseba Bayon & Daniel Castro-Fresno & Jorge Rodriguez-Hernandez, 2013. "Temperature Performance of Different Pervious Pavements: Rainwater Harvesting for Energy Recovery Purposes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5003-5016, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:194:y:2017:i:c:p:160-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.