IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7835-d1738512.html
   My bibliography  Save this article

Life Cycle Assessment of Spring Frost Protection Methods: High and Contrasted Environmental Consequences in Vineyard Management

Author

Listed:
  • Vincent Baillet

    (GRAPPE, Ecole Supérieure des Agricultures (ESA), USC 1422 INRAE, 49007 Angers, France)

  • Ronan Symoneaux

    (GRAPPE, Ecole Supérieure des Agricultures (ESA), USC 1422 INRAE, 49007 Angers, France)

  • Christel Renaud-Gentié

    (GRAPPE, Ecole Supérieure des Agricultures (ESA), USC 1422 INRAE, 49007 Angers, France)

Abstract

Due to climate change, the risk of spring frosts has increased and may rise further in the near future. This is pushing winegrowers to adopt active spring frost protection methods (ASFPMs) in their vineyard management practices. This study analyzes the potential contribution of the most commonly used ASFPMs to the environmental impacts of grape production in the Loire Valley region, using the Life Cycle Assessment (LCA) approach, while considering local mesoclimatic conditions. The environmental offsets of ASFPMs are modeled by comparing the viticulture stage impact with and without ASFPM technologies. Furthermore, the present paper proposes an original approach to integrate potential yield loss, simulating frost damage. This sensitivity analysis identifies the yield loss threshold at which the different ASFPMs are environmentally compensated under various mesoclimatic conditions. We show that the environmental contribution of instant ASFPMs varies most significantly based on the number of frost hours, but generally remains the highest across most environmental indicators compared to other impacts of viticulture, e.g., ranging from 35 to 92% for the climate change indicator. Wind machines contribute the least to the viticulture stage, regardless of frost hour occurrence. However, even permanent solutions have a significant impact on at least one environmental indicator, regardless of frost hour occurrence. Additionally, the environmental offset analysis outlines that the yield loss thresholds for ASFPM impact compensation are high, even for the most effective solutions in a frost-prone context. Future research should include passive spring frost protection methods and other types of vineyard management in LCA of the viticulture stage.

Suggested Citation

  • Vincent Baillet & Ronan Symoneaux & Christel Renaud-Gentié, 2025. "Life Cycle Assessment of Spring Frost Protection Methods: High and Contrasted Environmental Consequences in Vineyard Management," Sustainability, MDPI, vol. 17(17), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7835-:d:1738512
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carmen Ferrara & Giovanni De Feo, 2018. "Life Cycle Assessment Application to the Wine Sector: A Critical Review," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    2. Etienne Neethling & Théo Petitjean & Hervé Quénol & Gérard Barbeau, 2017. "Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(5), pages 777-803, June.
    3. Adrián Agraso-Otero & Javier J. Cancela & Mar Vilanova & Javier Ugarte Andreva & Ricardo Rebolledo-Leiva & Sara González-García, 2025. "Assessing the Environmental Sustainability of Organic Wine Grape Production with Qualified Designation of Origin in La Rioja, Spain," Agriculture, MDPI, vol. 15(5), pages 1-18, February.
    4. Rickard Arvidsson & Anne‐Marie Tillman & Björn A. Sandén & Matty Janssen & Anders Nordelöf & Duncan Kushnir & Sverker Molander, 2018. "Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1286-1294, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    2. Douglas K. Bardsley & Annette M. Bardsley & Marco Conedera, 2023. "The dispersion of climate change impacts from viticulture in Ticino, Switzerland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(3), pages 1-25, March.
    3. Dominika Siwiec & Andrzej Pacana, 2025. "Life Cycle-Based Product Sustainability Assessment Employing Quality and Cost," Sustainability, MDPI, vol. 17(8), pages 1-26, April.
    4. Francisco J. Moral & Cristina Aguirado & Virginia Alberdi & Abelardo García-Martín & Luis L. Paniagua & Francisco J. Rebollo, 2022. "Future Scenarios for Viticultural Suitability under Conditions of Global Climate Change in Extremadura, Southwestern Spain," Agriculture, MDPI, vol. 12(11), pages 1-17, November.
    5. Emmanouil Tziolas & Eleftherios Karapatzak & Ioannis Kalathas & Chris Lytridis & Spyridon Mamalis & Stefanos Koundouras & Theodore Pachidis & Vassilis G. Kaburlasos, 2023. "Comparative Assessment of Environmental/Energy Performance under Conventional Labor and Collaborative Robot Scenarios in Greek Viticulture," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
    6. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    7. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    8. Mélanie Douziech & Romain Besseau & Raphaël Jolivet & Bianka Shoai‐Tehrani & Jean‐Yves Bourmaud & Guillaume Busato & Mathilde Gresset‐Bourgeois & Paula Pérez‐López, 2024. "Life cycle assessment of prospective trajectories: A parametric approach for tailor‐made inventories and its computational implementation," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 25-40, February.
    9. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. repec:osf:socarx:hbzun_v1 is not listed on IDEAS
    11. Anna Furberg & Rickard Arvidsson & Sverker Molander, 2022. "A practice‐based framework for defining functional units in comparative life cycle assessments of materials," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 718-730, June.
    12. Carlos Pablo Sigüenza & Bernhard Steubing & Arnold Tukker & Glenn A. Aguilar‐Hernández, 2021. "The environmental and material implications of circular transitions: A diffusion and product‐life‐cycle‐based modeling framework," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 563-579, June.
    13. Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    14. Abad, Francisco Javier & Marín, Diana & Loidi, Maite & Miranda, Carlos & Royo, José Bernardo & Urrestarazu, Jorge & Santesteban, Luis Gonzaga, 2019. "Evaluation of the incidence of severe trimming on grapevine (Vitis vinifera L.) water consumption," Agricultural Water Management, Elsevier, vol. 213(C), pages 646-653.
    15. Kjersti Wergeland Krakhella & Marjorie Morales & Robert Bock & Frode Seland & Odne Stokke Burheim & Kristian Etienne Einarsrud, 2020. "Electrodialytic Energy Storage System: Permselectivity, Stack Measurements and Life-Cycle Analysis," Energies, MDPI, vol. 13(5), pages 1-26, March.
    16. Sanna Wickerts & Rickard Arvidsson & Anders Nordelöf & Magdalena Svanström & Patrik Johansson, 2024. "Prospective life cycle assessment of sodium‐ion batteries made from abundant elements," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 116-129, February.
    17. Gustavo Ezequiel Martinez & Roel Degens & Gabriela Espadas-Aldana & Daniele Costa & Giuseppe Cardellini, 2024. "Prospective Life Cycle Assessment of Hydrogen: A Systematic Review of Methodological Choices," Energies, MDPI, vol. 17(17), pages 1-15, August.
    18. Yokoo, Hide-Fumi & KUBO, Takahiro & Kunii, Daisuke & Sasaki, Hiroki, 2024. "Can climate leadership messaging encourage producer actions? A field experiment in Japan’s wine industry," SocArXiv hbzun, Center for Open Science.
    19. Katherine Cuevas-Zárate & Donna Cortez & Jorge Soto & Manuel Paneque, 2025. "Assessing Climate Risk in Viticulture: A Localized Index for the Semi-Arid and Mediterranean Regions of Chile," Agriculture, MDPI, vol. 15(12), pages 1-21, June.
    20. Porcelli, Roberto & Gibon, Thomas & Marazza, Diego & Righi, Serena & Rugani, Benedetto, 2023. "Prospective environmental impact assessment and simulation applied to an emerging biowaste-based energy technology in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    21. Karla G. Morrissey & Leah English & Greg Thoma & Jennie Popp, 2022. "Prospective Life Cycle Assessment and Cost Analysis of Novel Electrochemical Struvite Recovery in a U.S. Wastewater Treatment Plant," Sustainability, MDPI, vol. 14(20), pages 1-23, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7835-:d:1738512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.