IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p7070-d1717384.html
   My bibliography  Save this article

Safety Equipment Planning Through Experimental Analysis of Hydrogen Leakage and Ventilation in Enclosed Spaces

Author

Listed:
  • Hee-La Jang

    (Department of Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Republic of Korea)

  • Hyeon-Seok Seo

    (Department of Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Republic of Korea)

  • Hong-Cheol Shin

    (Department of Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Republic of Korea)

  • In-Ju Hwang

    (Department of Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Republic of Korea)

Abstract

In South Korea, securing ground space for installing hydrogen refueling stations in urban areas is challenging due to limited ground space and high-density development. Safety concerns for hydrogen systems in enclosed urban environments also require careful consideration. To address this issue, this study explored a method of undergrounding hydrogen infrastructure as a solution for urban hydrogen charging stations. This study examined the characteristics of hydrogen diffusion and concentration reduction under leakage conditions within a confined hydrogen infrastructure, focusing on key safety systems, including emergency shut-off valves (ESVs) and ventilation fans. We discovered that the ESV reduced hydrogen concentration by over 80%. Installing two or more ventilation fans arranged horizontally improves airflow and enhances ventilation efficiency. Moreover, increasing the number of fans reduces stagnant zones within the space, effectively lowering the average hydrogen concentration.

Suggested Citation

  • Hee-La Jang & Hyeon-Seok Seo & Hong-Cheol Shin & In-Ju Hwang, 2025. "Safety Equipment Planning Through Experimental Analysis of Hydrogen Leakage and Ventilation in Enclosed Spaces," Sustainability, MDPI, vol. 17(15), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:7070-:d:1717384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/7070/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/7070/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyon Wook Ji & Hongcheol Lee & Inju Hwang & Heela Jang, 2022. "Safe Ventilation Methods against Leaks in Hydrogen Fuel Cell Rooms in Homes," Energies, MDPI, vol. 15(15), pages 1-13, July.
    2. Xiao, Huahua & Duan, Qiangling & Sun, Jinhua, 2018. "Premixed flame propagation in hydrogen explosions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1988-2001.
    3. Solomon, Barry D. & Banerjee, Abhijit, 2006. "Erratum to "A global survey of hydrogen energy research, development and policy": [Energy Policy 34 (2006) 781-792]," Energy Policy, Elsevier, vol. 34(11), pages 1318-1208, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiaxing & Gao, Wei & Gao, Yuke & Liang, Bo & Lu, Han & Li, Yanchao, 2025. "Effects of pentafluoroethane content, vent diameter, and static activation overpressure on hydrogen explosion equilibrium venting," Energy, Elsevier, vol. 322(C).
    2. Huadao Xing & Runze Yu & Guangan Xu & Xiaodong Li & Yanyu Qiu & Derong Wang & Bin Li & Lifeng Xie, 2022. "Theoretical and Experimental Investigation of Explosion Characteristics of Hydrogen Explosion in a Closed Vessel," Energies, MDPI, vol. 15(22), pages 1-14, November.
    3. Arho Suominen, 2014. "Phases of growth in a green tech research network: a bibliometric evaluation of fuel cell technology from 1991 to 2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 51-72, July.
    4. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Cong, Beihua & Xiao, Qiuping & Liu, Haifeng, 2022. "Premixed syngas/air combustion in closed ducts with varied aspect ratios and initial pressures," Energy, Elsevier, vol. 254(PC).
    5. Dougherty, William & Kartha, Sivan & Rajan, Chella & Lazarus, Michael & Bailie, Alison & Runkle, Benjamin & Fencl, Amanda, 2009. "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA," Energy Policy, Elsevier, vol. 37(1), pages 56-67, January.
    6. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    7. Mimi Min & Cheolhee Yoon & Narin Yoo & Jinseo Kim & Yeosong Yoon & Seungho Jung, 2025. "Hydrogen Risk Assessment Studies: A Review Toward Environmental Sustainability," Energies, MDPI, vol. 18(2), pages 1-27, January.
    8. Shashi Sharma & Shivani Agarwal & Ankur Jain, 2021. "Significance of Hydrogen as Economic and Environmentally Friendly Fuel," Energies, MDPI, vol. 14(21), pages 1-28, November.
    9. Zhang, Yun & Zhang, Chuanbiao & Li, Wenjuan & Xiao, Qiuping & Jiao, Fengyuan & Xu, Sen & Lan, Yanhua & Fu, Yizheng & Shu, Chi-Min & Cao, Weiguo, 2023. "Reaction mechanism of stearic acid pyrolysis via reactive molecular dynamics simulation and TG-IR technology," Renewable Energy, Elsevier, vol. 217(C).
    10. Chun, Dongphil & Hong, Sungjun & Chung, Yanghon & Woo, Chungwon & Seo, Hangyeol, 2016. "Influencing factors on hydrogen energy R&D projects: An ex-post performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1252-1258.
    11. Xenias, Dimitrios & Whitmarsh, Lorraine, 2013. "Dimensions and determinants of expert and public attitudes to sustainable transport policies and technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 75-85.
    12. István Péter Kondor, 2025. "Sustainable Fuels for Gas Turbines—A Review," Sustainability, MDPI, vol. 17(13), pages 1-23, July.
    13. Hwang, Jenn Jiang, 2012. "Review on development and demonstration of hydrogen fuel cell scooters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3803-3815.
    14. Li, Jun, 2011. "Decoupling urban transport from GHG emissions in Indian cities--A critical review and perspectives," Energy Policy, Elsevier, vol. 39(6), pages 3503-3514, June.
    15. van Ruijven, Bas & Hari, Lakshmikanth & van Vuuren, Detlef P. & de Vries, Bert, 2008. "The potential role of hydrogen energy in India and Western Europe," Energy Policy, Elsevier, vol. 36(5), pages 1649-1665, May.
    16. Beatrice Negro & Maria Enrica Virgillito, 2025. "More Hype than Hope. Hydrogen Policy, Projects and Environmental Conflicts," LEM Papers Series 2025/28, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    17. Liang, He & Yan, Xingqing & Shi, Enhua & Wang, Xinfei & Qi, Chang & Ding, Jianfei & Zhang, Lianzhuo & Chen, Lei & Lv, Xianshu & Yu, Jianliang, 2024. "Effect of hydrogen blending on ammonia/air explosion characteristics under wide equivalence ratio," Energy, Elsevier, vol. 297(C).
    18. Long Li & Shuqi Wang & Shengxi Zhang & Ding Liu & Shengbin Ma, 2023. "The Hydrogen Energy Infrastructure Location Selection Model: A Hybrid Fuzzy Decision-Making Approach," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    19. P. Balachandra & B. Sudhakara Reddy, 2007. "Hydrogen Energy For Indian Transport Sector - A Well-To-Wheel Techno-Economic and Environmental Feasibility Analysis," Energy Working Papers 22323, East Asian Bureau of Economic Research.
    20. Zilong Zhang & Zhaotong Zhang & Yuqi Zhou & Yujie Ouyang & Jiangtao Sun & Jing Zhang & Bin Li & Dan Zhang & Yongxu Wang & Jian Yao & Huadao Xing & Lifeng Xie, 2025. "Review of the Diffusion Process, Explosion Mechanism, and Detection Technology of Hydrogen and Ammonia," Energies, MDPI, vol. 18(10), pages 1-35, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:7070-:d:1717384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.