IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p6877-d1712413.html
   My bibliography  Save this article

The Influence Mechanism of the Digital Economy on Carbon Intensity Across Chinese Provinces

Author

Listed:
  • Jiazhen Duan

    (Business School, Beijing Information Science & Technology University, Beijing 100085, China)

  • Zhuowen Zhang

    (Business School, Beijing Information Science & Technology University, Beijing 100085, China)

  • Haoran Zhao

    (Business School, Beijing Information Science & Technology University, Beijing 100085, China)

  • Chunhua Jin

    (Business School, Beijing Information Science & Technology University, Beijing 100085, China)

  • Sen Guo

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

The accelerating growth of the digital economy (DE) offers fresh momentum towards reaching carbon emissions’ peak and neutrality. Nevertheless, the impact mechanism of the DE on carbon emissions intensity (CEI) is insufficiently characterized. Our study first constructs an expanded comprehensive indicator system to evaluate DE development level from five dimensions containing 17 indicators. Panel data from 30 Chinese provincial regions (2013–2023) were analyzed using fixed effects, mediating effects, and spatial Durbin models to empirically examine the relationship and mechanisms between DE and CEI. Considering the existence of indirect effects of DE on CEs, the mechanism associated with the effect of the DE on CEs from the perspectives of economic growth, industrial structure upgrading, and scientific and technology innovation has been explored. The findings indicate notable regional disparities in the DE level across various provincial regions of China. China’s DE development significantly inhibits CEI. Furthermore, the DE’s development has successfully curtailed CE growth via three mediating mechanisms. And the DE exhibits a critical spatial spillover effect on CEI, and that effect also exhibits regional heterogeneity. Our findings can aid in regional DE development and the creation of policies to reduce CEs.

Suggested Citation

  • Jiazhen Duan & Zhuowen Zhang & Haoran Zhao & Chunhua Jin & Sen Guo, 2025. "The Influence Mechanism of the Digital Economy on Carbon Intensity Across Chinese Provinces," Sustainability, MDPI, vol. 17(15), pages 1-25, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6877-:d:1712413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/6877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/6877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Pace & James LeSage, 2009. "A sampling approach to estimate the log determinant used in spatial likelihood problems," Journal of Geographical Systems, Springer, vol. 11(3), pages 209-225, September.
    2. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    3. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    4. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    5. Yu, Bolin & Fang, Debin & Yu, Hongwei & Zhao, Chaoyang, 2021. "Temporal-spatial determinants of renewable energy penetration in electricity production: Evidence from EU countries," Renewable Energy, Elsevier, vol. 180(C), pages 438-451.
    6. Zheng, Jiajia & Wang, Xingwu, 2021. "Can mobile information communication technologies (ICTs) promote the development of renewables?-evidence from seven countries," Energy Policy, Elsevier, vol. 149(C).
    7. Jingwei Sun & Jingzhu Chen, 2023. "Digital Economy, Energy Structure Transformation, and Regional Carbon Dioxide Emissions," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    8. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Understanding energy consumption behavior for future demand response strategy development," Energy, Elsevier, vol. 46(1), pages 94-100.
    9. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    10. Serdar Yilmaz & Kingley E. Haynes & Mustafa Dinc, 2002. "Geographic and Network Neighbors: Spillover Effects of Telecommunications Infrastructure," Journal of Regional Science, Wiley Blackwell, vol. 42(2), pages 339-360, May.
    11. Gao, Da & Li, Ge & Yu, Jiyu, 2022. "Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities," Energy, Elsevier, vol. 247(C).
    12. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    13. Charles Kenny, 2003. "The Internet and Economic Growth in Less-developed Countries: A Case of Managing Expectations? 1," Oxford Development Studies, Taylor & Francis Journals, vol. 31(1), pages 99-113.
    14. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
    15. Zhao, Haoran & Guo, Sen, 2023. "Analysis of the non-linear impact of digital economy development on energy intensity: Empirical research based on the PSTR model," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianchu Feng & Andrea Appolloni & Jiayu Chen, 2024. "How does corporate digital transformation affect carbon productivity? Evidence from Chinese listed companies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(12), pages 31425-31445, December.
    2. Xiujin Guo & Zhengming Wang, 2024. "How does the digital economy affect the green development of China’s industry?," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-21, September.
    3. Yi, Jiahui & Dai, Sheng & Li, Lin & Cheng, Jinhua, 2024. "How does digital economy development affect renewable energy innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Jiangang Huang & Xinya Chen & Xing Zhao, 2024. "How Digital Technology Reduces Carbon Emissions: From the Perspective of Green Innovation, Industry Upgrading, and Energy Transition," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 19294-19326, December.
    5. Ya Wu & Yin Liu, 2025. "How does the digital economy affect urban CO2 emissions? Mechanism discussion and empirical test," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(6), pages 14097-14122, June.
    6. Li, Chengyou & Zheng, Chunji & Liu, Mengxun & Wang, Zeru, 2024. "Digital economy spillover on energy saving and emission reduction: Evidence from China," Energy, Elsevier, vol. 308(C).
    7. Na Lu & Tiantian Shan & Wen Li & Xuan Liu & Weidong Wang, 2025. "Does the Digital Economy Promote Green Land Use Efficiency?," Sustainability, MDPI, vol. 17(16), pages 1-22, August.
    8. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    9. Zheng, Mingbo & Zhang, Xinyu, 2025. "Digitalization and renewable energy development: Analysis based on cross-country panel data," Energy, Elsevier, vol. 319(C).
    10. Zihanxin Li & Nuoyan Li & Huwei Wen, 2021. "Digital Economy and Environmental Quality: Evidence from 217 Cities in China," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    11. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    12. Kangni Lyu & Shuwang Yang & Kun Zheng & Yao Zhang, 2023. "How Does the Digital Economy Affect Carbon Emission Efficiency? Evidence from Energy Consumption and Industrial Value Chain," Energies, MDPI, vol. 16(2), pages 1-20, January.
    13. Wu, Haitao & Wang, Bingjie & Lu, Mingyue & Irfan, Muhammad & Miao, Xin & Luo, Shiyue & Hao, Yu, 2023. "The strategy to achieve zero‑carbon in agricultural sector: Does digitalization matter under the background of COP26 targets?," Energy Economics, Elsevier, vol. 126(C).
    14. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    15. Fang, Guochang & Chen, Gang & Yang, Kun & Yin, Weijun & Tian, Lixin, 2024. "How does green fiscal expenditure promote green total factor energy efficiency? — Evidence from Chinese 254 cities," Applied Energy, Elsevier, vol. 353(PA).
    16. Liang Liu & Yuhan Zhang & Xiujuan Gong & Mengyue Li & Xue Li & Donglin Ren & Pan Jiang, 2022. "Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    17. Shuangjie Li & Wei Wang & Liming Wang & Ge Wang, 2023. "Digital Economy and 3E Efficiency Performance: Evidence from EU Countries," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    18. Qiuqiu Guo & Xiaoyu Ma, 2023. "How Does the Digital Economy Affect Sustainable Urban Development? Empirical Evidence from Chinese Cities," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    19. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    20. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6877-:d:1712413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.