IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p6684-d1707305.html
   My bibliography  Save this article

Dynamic Evaluation for Subway–Bus Transfer Quality Referring to Benefits, Convenience, and Reliability

Author

Listed:
  • Hui Jin

    (School of Rail Transportation, Soochow University, Jixue Road No. 8, Suzhou 215131, China)

  • Jingxing Gao

    (School of Rail Transportation, Soochow University, Jixue Road No. 8, Suzhou 215131, China)

  • Zhehao Shen

    (School of Rail Transportation, Soochow University, Jixue Road No. 8, Suzhou 215131, China)

  • Miao Cai

    (School of Rail Transportation, Soochow University, Jixue Road No. 8, Suzhou 215131, China)

  • Xiang Zhu

    (School of Rail Transportation, Soochow University, Jixue Road No. 8, Suzhou 215131, China)

  • Junhao Wu

    (School of Rail Transportation, Soochow University, Jixue Road No. 8, Suzhou 215131, China)

Abstract

The integration of urban bus and subway services is critical for attracting passengers and for the sustainable development of public transit, as it helps to boost ridership with an extensive service that combines the attractions of buses and subways. To identify barriers in transferring from bus to subway or vice versa at different periods of the day, this research develops the popular evaluation indices found in the literature and revises them to reflect the most critical attributes of transfer quality. Thus, the deficiencies of transferring from subway to bus or vice versa are independently examined. Motivated by the changes in the indices at different periods, the day is divided into multiple periods. Then, dynamic transfer-volume-based TOPSIS is developed, instead of assigning index weights based on period sequence. The index weight is revised to emphasize the peak periods. Taking a case study in Suzhou, the barriers to inter-modal transfer are identified between subways and buses. It is found that subway-to-bus transfer quality is only one-third of that of bus-to-subway transfers due to the great changes in bus runs (19–45 vs. 14–26), lower bus coverage rates (0.42–0.47 vs. 0.50–0.55), and larger deviation of connected POIs (9.0–9.4 vs. 1.1–1.8), as well as the lower reliability of connected bus lines (0.3–0.47 beyond peaks vs. 0.58 and 0.96). Multi-faceted implementations are recommended for inter-modal subway-to-bus transfers and bus-to-subway transfers, respectively. The research provides insights on enhancing bus–subway transfer quality with finer detail into different periods, to encourage the loyalty of transit passengers with more stable and reliable bus as well as transit service.

Suggested Citation

  • Hui Jin & Jingxing Gao & Zhehao Shen & Miao Cai & Xiang Zhu & Junhao Wu, 2025. "Dynamic Evaluation for Subway–Bus Transfer Quality Referring to Benefits, Convenience, and Reliability," Sustainability, MDPI, vol. 17(15), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6684-:d:1707305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/6684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/6684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garcia-Martinez, Andres & Cascajo, Rocio & Jara-Diaz, Sergio R. & Chowdhury, Subeh & Monzon, Andres, 2018. "Transfer penalties in multimodal public transport networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 52-66.
    2. Jiancheng Weng & Xiaojian Di & Chang Wang & Jingjing Wang & Lizeng Mao, 2018. "A Bus Service Evaluation Method from Passenger’s Perspective Based on Satisfaction Surveys: A Case Study of Beijing, China," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    3. Pan, Yingjiu & Chen, Shuyan & Li, Tiezhu & Niu, Shifeng & Tang, Kun, 2019. "Exploring spatial variation of the bus stop influence zone with multi-source data: A case study in Zhenjiang, China," Journal of Transport Geography, Elsevier, vol. 76(C), pages 166-177.
    4. Chakrabarti, Sandip & Giuliano, Genevieve, 2015. "Does service reliability determine transit patronage? Insights from the Los Angeles Metro bus system," Transport Policy, Elsevier, vol. 42(C), pages 12-20.
    5. Cheng, Yung-Hsiang & Tseng, Wei-Chih, 2016. "Exploring the effects of perceived values, free bus transfer, and penalties on intermodal metro–bus transfer users' intention," Transport Policy, Elsevier, vol. 47(C), pages 127-138.
    6. Chauhan, Vivek & Gupta, Akshay & Parida, Manoranjan, 2021. "Demystifying service quality of Multimodal Transportation Hub (MMTH) through measuring users’ satisfaction of public transport," Transport Policy, Elsevier, vol. 102(C), pages 47-60.
    7. Barros, Carlos Pestana & Wanke, Peter, 2015. "An analysis of African airlines efficiency with two-stage TOPSIS and neural networks," Journal of Air Transport Management, Elsevier, vol. 44, pages 90-102.
    8. Herbert Mohring & John Schroeter & Paitoon Wiboonchutikula, 1987. "The Values of Waiting Time, Travel Time, and a Seat on a Bus," RAND Journal of Economics, The RAND Corporation, vol. 18(1), pages 40-56, Spring.
    9. Jiao Ye & Jun Chen & Hua Bai & Yifan Yue, 2018. "Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach," Sustainability, MDPI, vol. 10(7), pages 1-16, June.
    10. Changhee Kim & Soo Wook Kim & Hee Jay Kang & Seung-Min Song, 2017. "What Makes Urban Transportation Efficient? Evidence from Subway Transfer Stations in Korea," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    11. Pan Wu & Jinlong Li & Yuzhuang Pian & Xiaochen Li & Zilin Huang & Lunhui Xu & Guilin Li & Ruonan Li, 2022. "How Determinants Affect Transfer Ridership between Metro and Bus Systems: A Multivariate Generalized Poisson Regression Analysis Method," Sustainability, MDPI, vol. 14(15), pages 1-31, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Yalong & Yang, Min & Feng, Tao & Ma, Yafeng & Ren, Yifeng & Ruan, Xinpei, 2022. "Heterogeneity in the transfer time of air-rail intermodal passengers based on ticket booking data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 533-552.
    2. Shi, Yuji & Zeng, Luohuan, 2025. "How do built environment characteristics influence metro-bus transfer patterns across metro station types in Shanghai?," Journal of Transport Geography, Elsevier, vol. 123(C).
    3. Jara-Diaz, Sergio & Monzon, Andres & Cascajo, Rocio & Garcia-Martinez, Andres, 2022. "An international time equivalency of the pure transfer penalty in urban transit trips: Closing the gap," Transport Policy, Elsevier, vol. 125(C), pages 48-55.
    4. Eugene Sogbe & Susilawati Susilawati & Tan Chee Pin, 2025. "Scaling up public transport usage: a systematic literature review of service quality, satisfaction and attitude towards bus transport systems in developing countries," Public Transport, Springer, vol. 17(1), pages 1-44, March.
    5. Cartenì, Armando & Henke, Ilaria & Falanga, Antonella & Picone, Mariarosaria, 2025. "Transport quality and user perception: Effect of bus station hedonic quality on student trip behavior," Journal of Transport Geography, Elsevier, vol. 126(C).
    6. Jiao Ye & Jun Chen & Hua Bai & Yifan Yue, 2018. "Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach," Sustainability, MDPI, vol. 10(7), pages 1-16, June.
    7. Sarker, Rumana Islam & Kaplan, Sigal & Mailer, Markus & Timmermans, Harry J.P., 2019. "Applying affective event theory to explain transit users’ reactions to service disruptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 593-605.
    8. Mahmut BAKIR & Şahap AKAN & Kasım KIRACI & Darjan KARABASEVIC & Dragisa STANUJKIC & Gabrijela POPOVIC, 2020. "Multiple-Criteria Approach of the Operational Performance Evaluation in the Airline Industry: Evidence from the Emerging Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 149-172, July.
    9. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    10. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    11. Xu-Hui Li & Lin Huang & Qiang Li & Hu-Chen Liu, 2020. "Passenger Satisfaction Evaluation of Public Transportation Using Pythagorean Fuzzy MULTIMOORA Method under Large Group Environment," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    12. Yue Liu & Jun Chen & Weiguang Wu & Jiao Ye, 2019. "Typical Combined Travel Mode Choice Utility Model in Multimodal Transportation Network," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    13. Rachel C. W. Wong & Tony W. Y. Yuen & Kwok Wah Fung & Janny M. Y. Leung, 2008. "Optimizing Timetable Synchronization for Rail Mass Transit," Transportation Science, INFORMS, vol. 42(1), pages 57-69, February.
    14. Eyjolfur Sigurdsson & Kristin Siggeirsdottir & Halldor Jonsson & Vilmundur Gudnason & Thorolfur Matthiasson & Brynjolfur Jonsson, 2008. "Early discharge and home intervention reduces unit costs after total hip replacement: results of a cost analysis in a randomized study," International Journal of Health Economics and Management, Springer, vol. 8(3), pages 181-192, September.
    15. Zahari, Teuku Naraski & McLellan, Benjamin Craig, 2024. "Sustainability of Indonesia's transportation sector energy and resources demand under the low carbon transition strategies," Energy, Elsevier, vol. 311(C).
    16. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    17. Xingchen Yan & Tao Wang & Jun Chen & Xiaofei Ye & Zhen Yang & Hua Bai, 2019. "Analysis of the Characteristics and Number of Bicycle–Passenger Conflicts at Bus Stops for Improving Safety," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    18. Marek Bauer & Piotr Kisielewski, 2021. "The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of Tarnow," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    19. Wenzhu Zhou & Yiwen Zhang & Yajun Tang, 2023. "Spatiotemporal Evolution and Mechanisms of Polder Land Use in the “Water-Polder-Village” System: A Case Study of Gaochun District in Nanjing, China," Land, MDPI, vol. 12(9), pages 1-21, September.
    20. Zhang, Lin & Lu, Jian & Fu, Bai-bai & Li, Shu-bin, 2019. "A cascading failures model of weighted bus transit route network under route failure perspective considering link prediction effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1315-1330.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6684-:d:1707305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.