IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i14p6240-d1696842.html
   My bibliography  Save this article

Integrating LCA and Multi-Criteria Tools for Eco-Design Approaches: A Case Study of Mountain Farming Systems

Author

Listed:
  • Pasqualina Sacco

    (Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy)

  • Davide Don

    (Fraunhofer Italia IEC, 39100 Bolzano, Italy)

  • Andreas Mandler

    (Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy)

  • Fabrizio Mazzetto

    (Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
    Competence Centre for Mountain Innovation Ecosystems, Free University of Bozen-Bolzano, 39100 Bolzano, Italy)

Abstract

Designing sustainable farming systems in mountainous regions is particularly challenging because of complex economic, social, and environmental factors. Production models prioritizing sustainability and environmental protection require integrated assessment methodologies that can address multiple criteria and incorporate diverse stakeholders’ perspectives while ensuring accuracy and applicability. Life cycle assessment (LCA) and multi-actor multi-criteria analysis (MAMCA) are two complementary approaches that support “eco-design” strategies aimed at identifying the most sustainable options, including on-farm transformation processes. This study presents an integrated application of LCA and MAMCA to four supply chains: rye bread, barley beer, cow cheese, and goat cheese. The results show that cereal-based systems have lower environmental impacts than livestock systems do, although beer’s required packaging significantly increases its footprint. The rye bread chain emerged as the most sustainable and widely preferred option, except under high-climatic risk scenarios. In contrast, livestock-based systems were generally less favorable because of greater impacts and risks but gained preference when production security became a priority. Both approaches underline the need for a deep understanding of production performance. Future assessments in mountain contexts should integrate logistical aspects and cooperative models to enhance the resilience and sustainability of short food supply chains.

Suggested Citation

  • Pasqualina Sacco & Davide Don & Andreas Mandler & Fabrizio Mazzetto, 2025. "Integrating LCA and Multi-Criteria Tools for Eco-Design Approaches: A Case Study of Mountain Farming Systems," Sustainability, MDPI, vol. 17(14), pages 1-34, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6240-:d:1696842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/14/6240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/14/6240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karoline Daugstad, 2019. "Resilience in Mountain Farming in Norway," Sustainability, MDPI, vol. 11(12), pages 1-11, June.
    2. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    3. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    4. María Belén Salazar Tijerino & M. Fernanda San Martín-González & Juan Antonio Velasquez Domingo & Jen-Yi Huang, 2023. "Life Cycle Assessment of Craft Beer Brewing at Different Scales on a Unit Operation Basis," Sustainability, MDPI, vol. 15(14), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    2. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    3. Li, Shunxi & Su, Bowen & St-Pierre, David L. & Sui, Pang-Chieh & Zhang, Guofang & Xiao, Jinsheng, 2017. "Decision-making of compressed natural gas station siting for public transportation: Integration of multi-objective optimization, fuzzy evaluating, and radar charting," Energy, Elsevier, vol. 140(P1), pages 11-17.
    4. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    5. Huiyuan Guan & Yongping Bai & Chunyue Zhang, 2022. "Research on Ecosystem Security and Restoration Pattern of Urban Agglomeration in the Yellow River Basin," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    6. Filipa Correia & Philipp Erfruth & Julie Bryhn, 2018. "The 2030 Agenda: The roadmap to GlobALLizaton," Working Papers 156, United Nations, Department of Economics and Social Affairs.
    7. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    8. Eduardo Fernández & José Rui Figueira & Jorge Navarro, 2023. "A theoretical look at ordinal classification methods based on comparing actions with limiting boundaries between adjacent classes," Annals of Operations Research, Springer, vol. 325(2), pages 819-843, June.
    9. Hervé Corvellec & Johan Hultman & Anne Jerneck & Susanne Arvidsson & Johan Ekroos & Niklas Wahlberg & Timothy W. Luke, 2021. "Resourcification: A non‐essentialist theory of resources for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1249-1256, November.
    10. Pérez-Sánchez, Laura & Velasco-Fernández, Raúl & Giampietro, Mario, 2021. "The international division of labor and embodied working time in trade for the US, the EU and China," Ecological Economics, Elsevier, vol. 180(C).
    11. Tetsuya Tsurumi & Shunsuke Managi, 2025. "Income and Subjective Well-Being: The Importance of Index Choice for Sustainable Economic Development," Sustainability, MDPI, vol. 17(12), pages 1-32, June.
    12. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    13. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    14. Ioannis Falkonakis & Saeid Lotfian & Baran Yeter, 2024. "Multi-Criteria Decision Analysis of an Innovative Additive Manufacturing Technique for Onboard Maintenance," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
    15. Carina Mueller & Christopher West & Mairon G. Bastos Lima & Bob Doherty, 2023. "Demand-Side Actors in Agricultural Supply Chain Sustainability: An Assessment of Motivations for Action, Implementation Challenges, and Research Frontiers," World, MDPI, vol. 4(3), pages 1-20, September.
    16. Janet Judy McIntyre‐Mills, 2013. "Anthropocentrism and Well‐being: A Way Out of the Lobster Pot?," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(2), pages 136-155, March.
    17. Hametner, Markus, 2022. "Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability," Ecological Economics, Elsevier, vol. 199(C).
    18. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    19. Ronja Teschner & Jessica Ruppen & Basil Bornemann & Rony Emmenegger & Lucía Aguirre Sánchez, 2021. "Mapping Sustainable Diets: A Comparison of Sustainability References in Dietary Guidelines of Swiss Food Governance Actors," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    20. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6240-:d:1696842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.