IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p6170-d1695224.html
   My bibliography  Save this article

Review and Outlook of Fuel Cell Power Systems for Commercial Vehicles, Buses, and Heavy Trucks

Author

Listed:
  • Xingxing Wang

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

  • Jiaying Ji

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

  • Junyi Li

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

  • Zhou Zhao

    (Technology Center-Foresight Technology Research Institute, Higer Bus Co., Ltd., Suzhou 215062, China)

  • Hongjun Ni

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

  • Yu Zhu

    (School of Mechanical Engineering, Nantong University, Nantong 226019, China)

Abstract

The power system, which is also one of the most crucial parts of fuel cell cars, marks the biggest distinction between them and conventional automobiles. Fuel cell hybrid power systems are reviewed in this paper along with their current state of research. Three different kinds of fuel cell hybrid power systems—fuel cell–battery, fuel cell–supercapacitor, and fuel cell–battery–supercapacitor—are thoroughly compared and analyzed, and they are systematically explained in the three areas of passenger cars, buses, and heavy duty trucks. Existing fuel cell hybrid systems and energy strategies are systematically reviewed and summarized, including predictive control strategies based on game theory, power allocation strategies, fuzzy control strategies, and adaptive super twisted sliding mode control (ASTSMC) energy management techniques. This study offers recommendations and direction for the future direction of fuel cell hybrid power system research and development.

Suggested Citation

  • Xingxing Wang & Jiaying Ji & Junyi Li & Zhou Zhao & Hongjun Ni & Yu Zhu, 2025. "Review and Outlook of Fuel Cell Power Systems for Commercial Vehicles, Buses, and Heavy Trucks," Sustainability, MDPI, vol. 17(13), pages 1-30, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6170-:d:1695224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/6170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/6170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Tianyu & Huang, Lingtao & Liu, Huiying, 2019. "Energy management and economic analysis for a fuel cell supercapacitor excavator," Energy, Elsevier, vol. 172(C), pages 840-851.
    2. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    3. Mian, Shahid Hassan & Nazir, Muhammad Saqib & Ahmad, Iftikhar & Khan, Safdar Abbas, 2023. "Optimized nonlinear controller for fuel cell, supercapacitor, battery, hybrid photoelectrochemical and photovoltaic cells based hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    4. Ettihir, K. & Boulon, L. & Agbossou, K., 2016. "Optimization-based energy management strategy for a fuel cell/battery hybrid power system," Applied Energy, Elsevier, vol. 163(C), pages 142-153.
    5. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    6. Li, Tianyu & Liu, Huiying & Ding, Daolin, 2018. "Predictive energy management of fuel cell supercapacitor hybrid construction equipment," Energy, Elsevier, vol. 149(C), pages 718-729.
    7. Jia, Chunchun & Li, Kunang & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao, 2023. "Health-aware energy management strategy for fuel cell hybrid bus considering air-conditioning control based on TD3 algorithm," Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    2. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    3. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).
    4. Yan Tong & Issam Salhi & Qin Wang & Gang Lu & Shengyu Wu, 2025. "Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 18(9), pages 1-29, May.
    5. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).
    6. Gao, Renjing & Zhou, Guangli & Wang, Qi, 2024. "Real-time three-level energy management strategy for series hybrid wheel loaders based on WG-MPC," Energy, Elsevier, vol. 295(C).
    7. Li, Jianwei & Zou, Weitao & Yang, Qingqing & Yao, Fang & Zhu, Jin, 2024. "EV charging fairness protective management against charging demand uncertainty for a new “1 to N” automatic charging pile," Energy, Elsevier, vol. 306(C).
    8. Hoai Vu Anh Truong & Hoang Vu Dao & Tri Cuong Do & Cong Minh Ho & Xuan Dinh To & Tri Dung Dang & Kyoung Kwan Ahn, 2020. "Mapping Fuzzy Energy Management Strategy for PEM Fuel Cell–Battery–Supercapacitor Hybrid Excavator," Energies, MDPI, vol. 13(13), pages 1-27, July.
    9. Baodi Zhang & Sheng Guo & Xin Zhang & Qicheng Xue & Lan Teng, 2020. "Adaptive Smoothing Power Following Control Strategy Based on an Optimal Efficiency Map for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 13(8), pages 1-25, April.
    10. Koubaa, Rayhane & Bacha, Seddik & Smaoui, Mariem & krichen, Lotfi, 2020. "Robust optimization based energy management of a fuel cell/ultra-capacitor hybrid electric vehicle under uncertainty," Energy, Elsevier, vol. 200(C).
    11. Xin, Yuntong & Hu, Jianjun & Wang, Zhouxin, 2024. "An energy management strategy with considering ultracapacitor ideal state of charge for fuel cell/battery/ultracapacitor vehicle," Energy, Elsevier, vol. 304(C).
    12. Li, Jianwei & Liu, Jie & Yang, Qingqing & Wang, Tianci & He, Hongwen & Wang, Hanxiao & Sun, Fengchun, 2025. "Reinforcement learning based energy management for fuel cell hybrid electric vehicles: A comprehensive review on decision process reformulation and strategy implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    13. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Ker, P.J. & Majlan, E.H. & Wan Daud, W.R., 2018. "Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 2061-2079.
    14. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
    15. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    16. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Wei Zhang & Jixin Wang & Shaofeng Du & Hongfeng Ma & Wenjun Zhao & Haojie Li, 2019. "Energy Management Strategies for Hybrid Construction Machinery: Evolution, Classification, Comparison and Future Trends," Energies, MDPI, vol. 12(10), pages 1-26, May.
    18. Zhang, Wei & Wang, Jixin & Liu, Yong & Gao, Guangzong & Liang, Siwen & Ma, Hongfeng, 2020. "Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery," Applied Energy, Elsevier, vol. 275(C).
    19. Tang, Tianfeng & Peng, Qianlong & Shi, Qing & Peng, Qingguo & Zhao, Jin & Chen, Chaoyi & Wang, Guangwei, 2024. "Energy management of fuel cell hybrid electric bus in mountainous regions: A deep reinforcement learning approach considering terrain characteristics," Energy, Elsevier, vol. 311(C).
    20. Tomás R. Pires & João F. P. Fernandes & Paulo J. Costa Branco, 2024. "Driving Profile Optimization for Energy Management in the Formula Student Técnico Prototype," Energies, MDPI, vol. 17(24), pages 1-22, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6170-:d:1695224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.