IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5979-d1690430.html
   My bibliography  Save this article

The Impact of Land-Use Changes on the Spatiotemporal Dynamics of Net Primary Productivity in Harbin, China

Author

Listed:
  • Chaofan Zhang

    (School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China)

  • Jie Liu

    (School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China)

Abstract

As the global population continues to rise, the impact of urbanization on land utilization and ecosystems are growing more pronounced, particularly within the expanding area of Asia. The land use/land change (LULC) brought by urban expansion directly impacts plant growth and ecological productivity, altering the carbon cycle and climate regulation functions of the region. This research focuses on Harbin City as a case study, employing an enhanced version of the Carnegie–Ames–Stanford Approach (CASA) model to analyze the spatial–temporal variations in vegetation Net Primary Productivity (NPP) across the area from 2000 to 2020. The findings indicate that Net Primary Productivity (NPP) in Harbin exhibited notable interannual variability and spatial heterogeneity. From 2000 to 2005, a decline in NPP was observed across 60.75% of the area. This reduction was predominantly concentrated in the central and eastern areas of the city, where forested landscapes are the dominant feature. In contrast, from 2010 to 2015, 92.12% of the region saw an increase in NPP, closely related to the overall improvement in NPP across all land-use types. Land-use change significantly influenced NPP dynamics. Between 2000 and 2005, 54.26% of NPP increases stemmed from the transition of farmland into forest, highlighting the effectiveness of the “conversion of farmland back to forests” policy. From 2005 to 2010, 98.6% of the area experienced NPP decline, mainly due to forest and cropland degradation, especially the unstable carbon sink function of forest ecosystems. Between 2010 and 2015, NPP improved across 96.86% of the area, driven by forest productivity recovery and better agricultural management. These results demonstrate the profound and lasting impact of land-use transitions on the spatiotemporal dynamics of NPP.

Suggested Citation

  • Chaofan Zhang & Jie Liu, 2025. "The Impact of Land-Use Changes on the Spatiotemporal Dynamics of Net Primary Productivity in Harbin, China," Sustainability, MDPI, vol. 17(13), pages 1-29, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5979-:d:1690430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rizwan Muhammad & Wenyin Zhang & Zaheer Abbas & Feng Guo & Luc Gwiazdzinski, 2022. "Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China," Land, MDPI, vol. 11(3), pages 1-24, March.
    2. Liming Zhou & Yuhong Tian & Ranga B. Myneni & Philippe Ciais & Sassan Saatchi & Yi Y. Liu & Shilong Piao & Haishan Chen & Eric F. Vermote & Conghe Song & Taehee Hwang, 2014. "Widespread decline of Congo rainforest greenness in the past decade," Nature, Nature, vol. 509(7498), pages 86-90, May.
    3. Ph. Ciais & M. Reichstein & N. Viovy & A. Granier & J. Ogée & V. Allard & M. Aubinet & N. Buchmann & Chr. Bernhofer & A. Carrara & F. Chevallier & N. De Noblet & A. D. Friend & P. Friedlingstein & T. , 2005. "Europe-wide reduction in primary productivity caused by the heat and drought in 2003," Nature, Nature, vol. 437(7058), pages 529-533, September.
    4. Yanzhen Zhang & Qian Wang & Zhaoqi Wang & Jianlong Li & Zengrang Xu, 2021. "Dynamics and Drivers of Grasslands in the Eurasian Steppe during 2000–2014," Sustainability, MDPI, vol. 13(11), pages 1-14, May.
    5. Yanyan Wu & Zhaohui Luo & Zhifeng Wu, 2024. "Exploring the Relationship between Urbanization and Vegetation Ecological Quality Changes in the Guangdong–Hong Kong–Macao Greater Bay Area," Land, MDPI, vol. 13(8), pages 1-25, August.
    6. Luwei Dai & Haiping Tang & Yunlong Pan & Dalin Liang, 2022. "Enhancing Ecosystem Services in the Agro-Pastoral Transitional Zone Based on Local Sustainable Management: Insights from Duolun County in Northern China," Land, MDPI, vol. 11(6), pages 1-24, May.
    7. Xuhui Wang & Shilong Piao & Philippe Ciais & Pierre Friedlingstein & Ranga B. Myneni & Peter Cox & Martin Heimann & John Miller & Shushi Peng & Tao Wang & Hui Yang & Anping Chen, 2014. "A two-fold increase of carbon cycle sensitivity to tropical temperature variations," Nature, Nature, vol. 506(7487), pages 212-215, February.
    8. Huina Wang & Lina Tang & Quanyi Qiu & Huaxiang Chen, 2020. "Assessing the Impacts of Urban Expansion on Habitat Quality by Combining the Concepts of Land Use, Landscape, and Habitat in Two Urban Agglomerations in China," Sustainability, MDPI, vol. 12(11), pages 1-17, May.
    9. Longkun Zhang & Qingchun Guan & Hui Li & Junwen Chen & Tianya Meng & Xu Zhou, 2024. "Assessment of Coastal Carbon Storage and Analysis of Its Driving Factors: A Case Study of Jiaozhou Bay, China," Land, MDPI, vol. 13(8), pages 1-24, August.
    10. Xinyu Li & Shengyi Cong & Liang Tang & Xianzhang Ling, 2025. "Effect of Freeze–Thaw Cycles on the Microstructure Characteristics of Unsaturated Expansive Soil," Sustainability, MDPI, vol. 17(2), pages 1-24, January.
    11. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Jiexiang Zhang & Xuejun Zhang & Juan Lyu & Yanping Qu & Guoyong Leng, 2024. "Increasing Socioeconomic Exposure to Compound Dry and Hot Events Under a Warming Climate in the Yangtze River Basin," Sustainability, MDPI, vol. 16(24), pages 1-18, December.
    3. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    4. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    5. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    6. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    7. Finger, Robert, 2010. "Evidence of slowing yield growth - The example of Swiss cereal yields," Food Policy, Elsevier, vol. 35(2), pages 175-182, April.
    8. Mary Nkosi & Fhumulani I. Mathivha, 2025. "The Application of CA–MLP–ANN in Assessing Urbanisation in Quaternary Catchment X22J of Mpumalanga, South Africa," Land, MDPI, vol. 14(11), pages 1-19, October.
    9. Brian C. Thiede & Abbie Robinson & Clark Gray, 2024. "Climatic Variability and Internal Migration in Asia: Evidence from Big Microdata," Population and Development Review, The Population Council, Inc., vol. 50(2), pages 513-540, June.
    10. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    11. Maysoon A A Osman & Elfatih M Abdel-Rahman & Joshua Orungo Onono & Lydia A Olaka & Muna M Elhag & Marian Adan & Henri E Z Tonnang, 2023. "Mapping, intensities and future prediction of land use/land cover dynamics using google earth engine and CA- artificial neural network model," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-28, July.
    12. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    13. Sylwia Barwicka & Małgorzata Milecka, 2022. "The “Perfect Village” Model as a Result of Research on Transformation of Plant Cover—Case Study of the Puchaczów Commune," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    14. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    15. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    16. Linfang Chen & Huanyu Sun & Shenghui Zhou & Shixing Jiao & Xiao Zhao & Jianmei Cheng, 2024. "Analysis of Resource Misallocation and Total Factor Productivity Losses in Green Agriculture: A Case Study of the North China Region," Sustainability, MDPI, vol. 17(1), pages 1-25, December.
    17. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    18. Patricio Pacheco & Eduardo Mera & Giovanni Salini, 2022. "Urban Densification Effect on Micrometeorology in Santiago, Chile: A Comparative Study Based on Chaos Theory," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    19. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    20. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CERDI Working papers halshs-02080285, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5979-:d:1690430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.