IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4346-d362902.html
   My bibliography  Save this article

Assessing the Impacts of Urban Expansion on Habitat Quality by Combining the Concepts of Land Use, Landscape, and Habitat in Two Urban Agglomerations in China

Author

Listed:
  • Huina Wang

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of the Chinese Academy of Sciences, Beijing 100049, China)

  • Lina Tang

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Quanyi Qiu

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Huaxiang Chen

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of the Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Understanding the spatiotemporal variability of habitat quality as a function of land-use changes is important for expanding scientific knowledge of ecological conservation. In this study, the impacts of land-use change on habitat quality were assessed in two urban agglomerations in China at different stages of development, namely (1) the Yangtze River Delta Urban Agglomeration (YRDUA), which has reached the middle and late stage of urbanization, and (2) the Golden Triangle of Southern Fujian (GTSF), which has reached the middle and early stage. The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) habitat quality model was applied to determine the habitat quality and the degree of habitat degradation in these two agglomerations. Overall, the habitat quality in the YRDUA was found to be clearly inferior to that in the GTSF. In the GTSF, more than 65% of the habitat was of good or excellent quality, whereas in the YRDUA, less than 45% of the habitat reached this quality. By combining the concepts of land use, landscape, and habitat, the boundary of degradation and the general increase in habitat quality from 2000 to 2015 were found to be mainly related to the landform, the dominant landscape, and the concentration of non-habitat areas. Additionally, the type, distribution, and fragmentation of the dominant habitat were shown to play important roles in habitat quality. Moreover, changes in industrial composition over time were demonstrated to be critical drivers of changes in areas of construction land.

Suggested Citation

  • Huina Wang & Lina Tang & Quanyi Qiu & Huaxiang Chen, 2020. "Assessing the Impacts of Urban Expansion on Habitat Quality by Combining the Concepts of Land Use, Landscape, and Habitat in Two Urban Agglomerations in China," Sustainability, MDPI, vol. 12(11), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4346-:d:362902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4346/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4346/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Weiguo & Deng, Yue & Tang, Zhenghong & Lei, Xuan & Chen, Zheng, 2017. "Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models," Ecological Modelling, Elsevier, vol. 345(C), pages 30-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Li & Zhaoshun Liu & Shujie Li & Yingxue Li, 2022. "Multi-Scenario Simulation Analysis of Land Use Impacts on Habitat Quality in Tianjin Based on the PLUS Model Coupled with the InVEST Model," Sustainability, MDPI, vol. 14(11), pages 1-18, June.
    2. Xinyi Wang & Fenzhen Su & Fengqin Yan & Xinjia Zhang & Xuege Wang, 2022. "Effects of Coastal Urbanization on Habitat Quality: A Case Study in Guangdong-Hong Kong-Macao Greater Bay Area," Land, MDPI, vol. 12(1), pages 1-24, December.
    3. Patricio Pacheco & Eduardo Mera & Giovanni Salini, 2022. "Urban Densification Effect on Micrometeorology in Santiago, Chile: A Comparative Study Based on Chaos Theory," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    4. Tao Li & Rui Bao & Ling Li & Mingfang Tang & Hongbing Deng, 2023. "Temporal and Spatial Changes of Habitat Quality and Their Potential Driving Factors in Southwest China," Land, MDPI, vol. 12(2), pages 1-18, January.
    5. Lisu Chen & Qiong Wei & Qiang Fu & Daolun Feng, 2021. "Spatiotemporal Evolution Analysis of Habitat Quality under High-Speed Urbanization: A Case Study of Urban Core Area of China Lin-Gang Free Trade Zone (2002–2019)," Land, MDPI, vol. 10(2), pages 1-21, February.
    6. Qinglong Ding & Yang Chen & Lingtong Bu & Yanmei Ye, 2021. "Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model," IJERPH, MDPI, vol. 18(5), pages 1-19, March.
    7. Thi Thu Vu & Yuan Shen & Hung-Yu Lai, 2022. "Strategies to Mitigate the Deteriorating Habitat Quality in Dong Trieu District, Vietnam," Land, MDPI, vol. 11(2), pages 1-17, February.
    8. Shunqian Gao & Liu Yang & Hongzan Jiao, 2022. "Spatio-Temporal Analysis of the Effects of Human Activities on Habitat Quality: A Case Study of Guiyang City, Guizhou Province, China," Land, MDPI, vol. 11(10), pages 1-20, October.
    9. Yongxin Liu & Yiting Wang & Yiwen Lin & Xiaoqing Ma & Shifa Guo & Qianru Ouyang & Caige Sun, 2023. "Habitat Quality Assessment and Driving Factors Analysis of Guangdong Province, China," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    10. Qian Cheng & Tieliang Wang & Fujiang Chen, 2023. "Study on the Spatial and Temporal Evolution of the Ecological Environmental Quality in Linghekou Wetland," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    11. Hanwen Zhang & Yanqing Lang, 2022. "Quantifying and Analyzing the Responses of Habitat Quality to Land Use Change in Guangdong Province, China over the Past 40 Years," Land, MDPI, vol. 11(6), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    2. Xiang Pan & Peiji Shi & Na Wu, 2020. "Spatial–Temporal Interaction Relationship between Ecosystem Services and Urbanization of Urban Agglomerations in the Transitional Zone of Three Natural Regions," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    3. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    4. Jinfeng Wang & Ya Li & Sheng Wang & Qing Li & Lingfeng Li & Xiaoling Liu, 2023. "Assessment of Multiple Ecosystem Services and Ecological Security Pattern in Shanxi Province, China," IJERPH, MDPI, vol. 20(6), pages 1-18, March.
    5. Yang Chen & Wenze Yue & Xue Liu & Linlin Zhang & Ye’an Chen, 2021. "Multi-Scenario Simulation for the Consequence of Urban Expansion on Carbon Storage: A Comparative Study in Central Asian Republics," Land, MDPI, vol. 10(6), pages 1-17, June.
    6. Xilong Dai & Yue Wang & Xinhang Li & Kang Wang & Jia Zhou & Hongwei Ni, 2023. "Effects of Temporal and Spatial Changes in Wetlands on Regional Carbon Storage in the Naoli River Basin, Sanjiang Plain, China," Land, MDPI, vol. 12(7), pages 1-17, June.
    7. Zijuan Zhao & Beilei Fan & Qingbo Zhou & Shihao Xu, 2022. "Simulating the Coupling of Rural Settlement Expansion and Population Growth in Deqing, Zhejiang Province, Based on MCCA Modeling," Land, MDPI, vol. 11(11), pages 1-23, November.
    8. Chen Qu & Wen Li & Jia Xu & Song Shi, 2023. "Blackland Conservation and Utilization, Carbon Storage and Ecological Risk in Green Space: A Case Study from Heilongjiang Province in China," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    9. Zhen Li & Songlin Wu & Shiwen Zhang & Chaojia Nie & Yong Li & Yuanfang Huang, 2020. "Optimization of Land Reuse Structure in Coal Mining Subsided Areas Considering Regional Economic Development: A Case Study in Pei County, China," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    10. Yingting He & Chuyu Xia & Zhuang Shao & Jing Zhao, 2022. "The Spatiotemporal Evolution and Prediction of Carbon Storage: A Case Study of Urban Agglomeration in China’s Beijing-Tianjin-Hebei Region," Land, MDPI, vol. 11(6), pages 1-25, June.
    11. Shaohan Wang & Shuang Song & Mengxi Shi & Shanshan Hu & Shuhan Xing & He Bai & Dawei Xu, 2023. "China’s National Park Construction Contributes to Carbon Peaking and Neutrality Goals," Land, MDPI, vol. 12(7), pages 1-22, July.
    12. Lili Geng & Yuanyuan Zhang & Huixian Hui & Yuhan Wang & Yongji Xue, 2023. "Response of Urban Ecosystem Carbon Storage to Land Use/Cover Change and Its Vulnerability Based on Major Function-Oriented Zone Planning," Land, MDPI, vol. 12(8), pages 1-21, August.
    13. Jiayu Wang & Tian Chen, 2022. "A Multi-Scenario Land Expansion Simulation Method from Ecosystem Services Perspective of Coastal Urban Agglomeration: A Case Study of GHM-GBA, China," Land, MDPI, vol. 11(11), pages 1-23, October.
    14. Zhiyuan Ma & Xuejun Duan & Lei Wang & Yazhu Wang & Jiayu Kang & Ruxian Yun, 2023. "A Scenario Simulation Study on the Impact of Urban Expansion on Terrestrial Carbon Storage in the Yangtze River Delta, China," Land, MDPI, vol. 12(2), pages 1-16, January.
    15. Kukkonen, M.O. & Khamis, M. & Muhammad, M.J. & Käyhkö, N. & Luoto, M., 2022. "Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania," Land Use Policy, Elsevier, vol. 112(C).
    16. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    17. Haiyan Meng & Yi Hu & Zuoji Dong, 2023. "Landscape Pattern Change and Ecological Effect in a Typical Mountain–Oasis–Desert Region in the Northwest Region of China," IJERPH, MDPI, vol. 20(5), pages 1-19, February.
    18. Wenyi Qiao & Weihua Guan & Xianjin Huang, 2021. "Assessing the Potential Impact of Land Use on Carbon Storage Driven by Economic Growth: A Case Study in Yangtze River Delta Urban Agglomeration," IJERPH, MDPI, vol. 18(22), pages 1-20, November.
    19. Abera, Wuletawu & Tamene, Lulseged & Kassawmar, Tibebu & Mulatu, Kalkidan & Kassa, Habtemariam & Verchot, Louis & Quintero, Marcela, 2021. "Impacts of land use and land cover dynamics on ecosystem services in the Yayo coffee forest biosphere reserve, southwestern Ethiopia," Ecosystem Services, Elsevier, vol. 50(C).
    20. Licheng Fang & Pangpang Gao & Shuguang Wang & Zhenhao Ma, 2023. "Coupling Fuzzy Bi-Level Chance Constraint Programming and Spatial Analysis for Urban Ecological Management," Land, MDPI, vol. 12(4), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4346-:d:362902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.