IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5817-d1686311.html
   My bibliography  Save this article

A Fast-Time MATLAB Model of an Aeronautical Low-Temperature PEM Fuel Cell for Sustainable Propulsion and Compressor Behavior at Varying Altitudes

Author

Listed:
  • Abolfazl Movahedian

    (Department of Engineering, University of Sannio, 82100 Benevento, Italy)

  • Gianluca Marinaro

    (CIRA—C.I.R.A. Centro Ricerca Italiano Aerospaziali, 81043 Capua, Italy)

  • Emma Frosina

    (Department of Engineering, University of Sannio, 82100 Benevento, Italy)

Abstract

The aviation sector significantly contributes to environmental challenges, including global warming and greenhouse gas emissions, due to its reliance on fossil fuels. Fuel cells present a viable alternative to conventional propulsion systems. In the context of light aircraft applications, proton exchange membrane fuel cells (PEMFCs) have recently attracted growing interest as a substitute for internal combustion engines (ICEs). However, their performance is highly sensitive to altitude variations, primarily due to limitations in compressor efficiency and instability in cathode pressure. To address these challenges, this research presents a comprehensive numerical model that couples a PEMFC system with a dynamic air compressor model under altitude-dependent conditions ranging from 0 to 3000 m. Iso-efficiency lines were integrated into the compressor map to evaluate its behavior across varying environmental parameters. The study examines key fuel cell stack characteristics, including voltage, current, and net power output. The results indicate that, as altitude increases, ambient pressure and air density decrease, causing the compressor to work harder to maintain the required compression ratio at the cathode of the fuel cell module. This research provides a detailed prediction of compressor efficiency trends by implementing iso-efficiency lines into the compressor map, contributing to sustainable aviation and aligning with global goals for low-emission energy systems by supporting cleaner propulsion technologies for lightweight aircraft.

Suggested Citation

  • Abolfazl Movahedian & Gianluca Marinaro & Emma Frosina, 2025. "A Fast-Time MATLAB Model of an Aeronautical Low-Temperature PEM Fuel Cell for Sustainable Propulsion and Compressor Behavior at Varying Altitudes," Sustainability, MDPI, vol. 17(13), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5817-:d:1686311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5817/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5817/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Wei & Li, Chengjiang & Jia, Tingwen & Wang, Shiyuan & Hao, Qianwen & Yang, Jing, 2025. "Evolutionary game analysis of sustainable aviation fuel promotion," Energy, Elsevier, vol. 322(C).
    2. Gong, Chengyuan & Xing, Lu & Liang, Cong & Tu, Zhengkai, 2022. "Modeling and dynamic characteristic simulation of air-cooled proton exchange membrane fuel cell stack for unmanned aerial vehicle," Renewable Energy, Elsevier, vol. 188(C), pages 1094-1104.
    3. González-Espasandín, Óscar & Leo, Teresa J. & Raso, Miguel A. & Navarro, Emilio, 2019. "Direct methanol fuel cell (DMFC) and H2 proton exchange membrane fuel (PEMFC/H2) cell performance under atmospheric flight conditions of Unmanned Aerial Vehicles," Renewable Energy, Elsevier, vol. 130(C), pages 762-773.
    4. Teresa Donateo, 2024. "Simulation Approaches and Validation Issues for Open-Cathode Fuel Cell Systems in Manned and Unmanned Aerial Vehicles," Energies, MDPI, vol. 17(4), pages 1-38, February.
    5. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xianxian & Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Endplate effect in an open-cathode proton exchange membrane fuel cell stack: Phenomenon and resolution," Renewable Energy, Elsevier, vol. 219(P1).
    2. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).
    3. Zhao, Chen & Wang, Fei & Wu, Xiaoyu, 2024. "Analysis and review on air-cooled open cathode proton exchange membrane fuel cells: Bibliometric, environmental adaptation and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    4. Teresa Donateo, 2024. "Simulation Approaches and Validation Issues for Open-Cathode Fuel Cell Systems in Manned and Unmanned Aerial Vehicles," Energies, MDPI, vol. 17(4), pages 1-38, February.
    5. Teresa Donateo, 2023. "Semi-Empirical Models for Stack and Balance of Plant in Closed-Cathode Fuel Cell Systems for Aviation," Energies, MDPI, vol. 16(22), pages 1-40, November.
    6. Fang, Shuo & Hu, Shuangxi & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2025. "Power management unit with maximum-efficiency-point-tracking to enhance the efficiency of micro DMFC stack," Energy, Elsevier, vol. 315(C).
    7. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    8. Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
    9. Zhao, Lei & Yuan, Hao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Tang, Wei & Ming, Pingwen & Dai, Haifeng, 2023. "Inconsistency evaluation of vehicle-oriented fuel cell stacks based on electrochemical impedance under dynamic operating conditions," Energy, Elsevier, vol. 265(C).
    10. Chang, Huawei & Yang, Zhengbo & Tu, Zhengkai, 2024. "Experimental study on the cold-start performance of a gas heating assisted air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 234(C).
    11. Fan, Lixin & Tu, Zhengkai & Cai, Shanshan & Miao, Bin & Ding, Ovi Lian & Chen, Yongtao & Chan, Siew Hwa, 2025. "Design principles and analysis of manifold design in a large-scale PEMFC stack," Energy, Elsevier, vol. 319(C).
    12. Piraino, Francesco & Blekhman, David & Dray, Michael & Fragiacomo, Petronilla, 2021. "Empirically verified analysis of dual pre-cooling system for hydrogen refuelling station," Renewable Energy, Elsevier, vol. 163(C), pages 1612-1625.
    13. Tu, Xikai & Lv, Jin & Wu, Jin & Luo, Xiaobing & Tu, Zhengkai, 2025. "Experimental investigation of a novel open cathode air-cooled fuel cell stack design featuring simultaneous inlet blowing and outlet suction," Energy, Elsevier, vol. 314(C).
    14. Zhang, Caizhi & Yu, Xingzi & Rubel, Hossain Md & Li, Qi & Sun, Yuhui & Jiang, Shangfeng & Wang, Gucheng, 2025. "Fault-tolerant method of open-cathode PEMFC based on adaptive strong tracking Kalman filter combined with Hampel algorithm," Applied Energy, Elsevier, vol. 388(C).
    15. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    16. Liu, Yang & Zhao, Junjie & Tu, Zhengkai, 2024. "Detecting performance degradation in a dead-ended hydrogen-oxygen proton exchange membrane fuel cell used for an unmanned underwater vehicle," Renewable Energy, Elsevier, vol. 222(C).
    17. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Zhang, Yuanzhi & Wei, Pengnan, 2024. "Enhancing PEM fuel cell dynamic performance: Co-optimization of cathode catalyst layer composition and operating conditions using a novel surrogate model," Renewable Energy, Elsevier, vol. 231(C).
    18. Yang, Qinwen & Xiao, Gang & Li, Lexi & Che, Mengjie & Hu, Xu-Qu & Meng, Min, 2021. "Collaborative design of multi-type parameters for design and operational stage matching in fuel cells," Renewable Energy, Elsevier, vol. 175(C), pages 1101-1110.
    19. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Zhixing Ji & Fafu Guo & Tingting Zhu & Kunlin Cheng & Silong Zhang & Jiang Qin & Peng Dong, 2023. "Thermodynamic Performance Comparisons of Ideal Brayton Cycles Integrated with High Temperature Fuel Cells as Power Sources on Aircraft," Sustainability, MDPI, vol. 15(3), pages 1-16, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5817-:d:1686311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.