IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2805-d1057073.html
   My bibliography  Save this article

Thermodynamic Performance Comparisons of Ideal Brayton Cycles Integrated with High Temperature Fuel Cells as Power Sources on Aircraft

Author

Listed:
  • Zhixing Ji

    (School of Power and Energy, Northwestern Polytechnical University, Xi’an 710012, China
    School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Fafu Guo

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Tingting Zhu

    (Department of Thermal and Fluid Engineering, University of Twente, 7522 NB Enschede, The Netherlands)

  • Kunlin Cheng

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Silong Zhang

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Jiang Qin

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Peng Dong

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Developing hybrid electric aircraft is propitious to reducing carbon dioxide emissions and fuel consumption. Combustion engines coupled with solid oxide fuel cells are proposed for aircraft propulsion systems, where the compressor is powered by fuel cells instead of turbines. The thermal cycle of the new engine is obviously different from that of conventional combustion engines and can be characterized in the temperature entropy diagram under some reasonable assumptions, which were analyzed and investigated. Performance parameters, such as the specific thrust, are derived and can be expressed by several fundamental thermal parameters. Three different cycles integrating Brayton cycles and SOFC are shown. The main conclusions are as follows: (1) The maximum operating pressure ratio of the Brayton cycles integrated with fuel cells is 32. The maximum thermal efficiency of the cycle at the lowest combustion temperature is 82.2%, while that of the BC is 65.1% at the high combustion temperature. (2) The new cycles can not work if the combustion temperature is lower than 1350 K. Otherwise, the fuel utilization will be too huge.

Suggested Citation

  • Zhixing Ji & Fafu Guo & Tingting Zhu & Kunlin Cheng & Silong Zhang & Jiang Qin & Peng Dong, 2023. "Thermodynamic Performance Comparisons of Ideal Brayton Cycles Integrated with High Temperature Fuel Cells as Power Sources on Aircraft," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2805-:d:1057073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Taegyu, 2014. "NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 69(C), pages 721-727.
    2. Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Kim, Seonyeob & Oh, Sechul & Song, Han Ho, 2018. "Experimental study of homogeneous charge compression ignition engine operation fuelled by emulated solid oxide fuel cell anode off-gas," Applied Energy, Elsevier, vol. 229(C), pages 42-62.
    3. González-Espasandín, Óscar & Leo, Teresa J. & Raso, Miguel A. & Navarro, Emilio, 2019. "Direct methanol fuel cell (DMFC) and H2 proton exchange membrane fuel (PEMFC/H2) cell performance under atmospheric flight conditions of Unmanned Aerial Vehicles," Renewable Energy, Elsevier, vol. 130(C), pages 762-773.
    4. Ding, Xiaoyi & Lv, Xiaojing & Weng, Yiwu, 2019. "Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system," Applied Energy, Elsevier, vol. 254(C).
    5. Ji, Zhixing & Rokni, Marvin Mikael & Qin, Jiang & Zhang, Silong & Dong, Peng, 2021. "Performance and size optimization of the turbine-less engine integrated solid oxide fuel cells on unmanned aerial vehicles with long endurance," Applied Energy, Elsevier, vol. 299(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Jaehyun & Kim, Yongtae & Choi, Wonjae & Ahn, Kook Young & Song, Han Ho, 2020. "Analysis on the operating performance of 5-kW class solid oxide fuel cell-internal combustion engine hybrid system using spark-assisted ignition," Applied Energy, Elsevier, vol. 260(C).
    2. Netskina, O.V. & Komova, O.V. & Simagina, V.I. & Odegova, G.V. & Prosvirin, I.P. & Bulavchenko, O.A., 2016. "Aqueous-alkaline NaBH4 solution: The influence of storage duration of solutions on reduction and activity of cobalt catalysts," Renewable Energy, Elsevier, vol. 99(C), pages 1073-1081.
    3. Meng, Kai & Zhou, Haoran & Chen, Ben & Tu, Zhengkai, 2021. "Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell," Energy, Elsevier, vol. 224(C).
    4. Teresa Donateo, 2024. "Simulation Approaches and Validation Issues for Open-Cathode Fuel Cell Systems in Manned and Unmanned Aerial Vehicles," Energies, MDPI, vol. 17(4), pages 1-38, February.
    5. Yang, Qinwen & Xiao, Gang & Li, Lexi & Che, Mengjie & Hu, Xu-Qu & Meng, Min, 2021. "Collaborative design of multi-type parameters for design and operational stage matching in fuel cells," Renewable Energy, Elsevier, vol. 175(C), pages 1101-1110.
    6. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2015. "Estimating the energy density of direct borohydride–hydrogen peroxide fuel cell systems for air-independent propulsion applications," Energy, Elsevier, vol. 90(P1), pages 980-986.
    7. Oh, Taek Hyun, 2016. "A formic acid hydrogen generator using Pd/C3N4 catalyst for mobile proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 112(C), pages 679-685.
    8. Huang, Yu & Turan, Ali, 2022. "Flexible power generation based on solid oxide fuel cell and twin-shaft free turbine engine: Mechanical equilibrium running and design analysis," Applied Energy, Elsevier, vol. 315(C).
    9. Ji, Zhixing & Rokni, Marvin Mikael & Qin, Jiang & Zhang, Silong & Dong, Peng, 2021. "Performance and size optimization of the turbine-less engine integrated solid oxide fuel cells on unmanned aerial vehicles with long endurance," Applied Energy, Elsevier, vol. 299(C).
    10. Park, Kilsu & Kim, Myoung-jin & Kwon, Soon-mo & Kang, Shinuang & Kim, Taegyu, 2023. "Performance evaluation of solid NaBH4-based hydrogen generator for fuel-cell-powered unmanned autonomous systems," Applied Energy, Elsevier, vol. 337(C).
    11. Gang, Byeong Gyu & Kim, Hyuntak & Kwon, Sejin, 2017. "Ground simulation of a hybrid power strategy using fuel cells and solar cells for high-endurance unmanned aerial vehicles," Energy, Elsevier, vol. 141(C), pages 1547-1554.
    12. Teresa Donateo, 2023. "Semi-Empirical Models for Stack and Balance of Plant in Closed-Cathode Fuel Cell Systems for Aviation," Energies, MDPI, vol. 16(22), pages 1-40, November.
    13. Gong, Chengyuan & Xing, Lu & Liang, Cong & Tu, Zhengkai, 2022. "Modeling and dynamic characteristic simulation of air-cooled proton exchange membrane fuel cell stack for unmanned aerial vehicle," Renewable Energy, Elsevier, vol. 188(C), pages 1094-1104.
    14. Wang, Yuqing & Wehrle, Lukas & Banerjee, Aayan & Shi, Yixiang & Deutschmann, Olaf, 2021. "Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling," Renewable Energy, Elsevier, vol. 163(C), pages 78-87.
    15. Çalışır, Duran & Ekici, Selcuk & Midilli, Adnan & Karakoc, T. Hikmet, 2023. "Benchmarking environmental impacts of power groups used in a designed UAV: Hybrid hydrogen fuel cell system versus lithium-polymer battery drive system," Energy, Elsevier, vol. 262(PB).
    16. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2014. "Performance evaluation of direct borohydride–hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes," Energy, Elsevier, vol. 76(C), pages 911-919.
    17. Choi, Wonjae & Song, Han Ho, 2020. "Composition-considered Woschni heat transfer correlation: Findings from the analysis of over-expected engine heat losses in a solid oxide fuel cell–internal combustion engine hybrid system," Energy, Elsevier, vol. 203(C).
    18. Kim, Young Sang & Lee, Young Duk & Ahn, Kook Young, 2020. "System integration and proof-of-concept test results of SOFC–engine hybrid power generation system," Applied Energy, Elsevier, vol. 277(C).
    19. Li, Bangxin & Irvine, John T.S. & Ni, Jiupai & Ni, Chengsheng, 2022. "High-performance and durable alcohol-fueled symmetrical solid oxide fuel cell based on ferrite perovskite electrode," Applied Energy, Elsevier, vol. 306(PB).
    20. Sun, Zhe & Cao, Dan & Ling, Yawen & Xiang, Feng & Sun, Zhixin & Wu, Fan, 2021. "Proton exchange membrane fuel cell model parameter identification based on dynamic differential evolution with collective guidance factor algorithm," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2805-:d:1057073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.