IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v337y2023ics0306261923002465.html
   My bibliography  Save this article

Performance evaluation of solid NaBH4-based hydrogen generator for fuel-cell-powered unmanned autonomous systems

Author

Listed:
  • Park, Kilsu
  • Kim, Myoung-jin
  • Kwon, Soon-mo
  • Kang, Shinuang
  • Kim, Taegyu

Abstract

A solid NaBH4-based hydrogen generator was developed as a hydrogen source for fuel-cell-powered unmanned autonomous systems (UAS). Although many studies have been conducted to extract hydrogen from solid NaBH4, performance evaluation required for commercialization are still insufficient so that a new structure of the hydrogen generator is required to meet the performance requirement. For this purpose, in this study, a new reactor was made of a magnesium alloy with perfluoroalkoxy coating to improve its thermal conductivity and chemical resistance. In addition, a porous partition was installed inside the reactor to separate the hydrogen buffer volume from the reaction zone where NaBH4 granules was filled. Next, The operational characteristics of the developed hydrogen generator were evaluated in high- and low-temperature environments, inclined pitch and roll angles, unpredictable power cut-off situations, and sudden hydrogen demand, including the idle, rated, and maximum power modes. A start-up of the hydrogen generator was possible without additional heating and insulation at −15 °C and the hydrogen generation was stable after start-up for all pitch (±30°) and roll (±45°) angles, whereas the CoG shifted forward by 26% of the total length as the agent solution was consumed. In addition, the hydrogen supply immediately recovered within 30 s after an unpredictable power cut-off. Hydrogen purity was 99.64% on average and impurities originated from the water vapor. Finally, the dynamic response to the sudden hydrogen demand and precise controllability of the hydrogen supply rate were tested according to the simulated hydrogen consumption profile for practical use in fuel cells. In conclusion, the developed hydrogen generator satisfied the requirements for commercialization.

Suggested Citation

  • Park, Kilsu & Kim, Myoung-jin & Kwon, Soon-mo & Kang, Shinuang & Kim, Taegyu, 2023. "Performance evaluation of solid NaBH4-based hydrogen generator for fuel-cell-powered unmanned autonomous systems," Applied Energy, Elsevier, vol. 337(C).
  • Handle: RePEc:eee:appene:v:337:y:2023:i:c:s0306261923002465
    DOI: 10.1016/j.apenergy.2023.120882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923002465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwon, Soon-mo & Kim, Myoung Jin & Kang, Shinuang & Kim, Taegyu, 2019. "Development of a high-storage-density hydrogen generator using solid-state NaBH4 as a hydrogen source for unmanned aerial vehicles," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Sim, Ju-hyeong & Kim, Taegyu, 2015. "Accelerated hydrolysis of solid-state NaBH4 by injecting NaHCO3 solution for hydrogen generation," Applied Energy, Elsevier, vol. 160(C), pages 999-1006.
    3. Kim, Taegyu, 2014. "NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 69(C), pages 721-727.
    4. Brigljević, Boris & Byun, Manhee & Lim, Hankwon, 2020. "Design, economic evaluation, and market uncertainty analysis of LOHC-based, CO2 free, hydrogen delivery systems," Applied Energy, Elsevier, vol. 274(C).
    5. Lutz, Michael & Linder, Marc & Bürger, Inga, 2020. "High capacity, low pressure hydrogen storage based on magnesium hydride and thermochemical heat storage: Experimental proof of concept," Applied Energy, Elsevier, vol. 271(C).
    6. Kim, Jincheol & Kim, Taegyu, 2015. "Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source," Applied Energy, Elsevier, vol. 160(C), pages 945-953.
    7. van Biert, L. & Visser, K. & Aravind, P.V., 2020. "A comparison of steam reforming concepts in solid oxide fuel cell systems," Applied Energy, Elsevier, vol. 264(C).
    8. Öberg, Simon & Odenberger, Mikael & Johnsson, Filip, 2022. "The cost dynamics of hydrogen supply in future energy systems – A techno-economic study," Applied Energy, Elsevier, vol. 328(C).
    9. Boukoberine, Mohamed Nadir & Zhou, Zhibin & Benbouzid, Mohamed, 2019. "A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects," Applied Energy, Elsevier, vol. 255(C).
    10. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    11. Shen, Yuanting & Yan, Xiaohui & An, Liang & Shen, Shuiyun & An, Lu & Zhang, Junliang, 2022. "Portable proton exchange membrane fuel cell using polyoxometalates as multi-functional hydrogen carrier," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Leilei & Wu, Zhen & Li, Ruiqing & Huang, Xianchun & Wang, Bofei & Yang, Fusheng & Zhang, Zaoxiao, 2024. "New insights into the impurity transport and separation behaviours during metal hydride dehydrogenation for ultra-pure hydrogen," Applied Energy, Elsevier, vol. 353(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwon, Soon-mo & Kim, Myoung Jin & Kang, Shinuang & Kim, Taegyu, 2019. "Development of a high-storage-density hydrogen generator using solid-state NaBH4 as a hydrogen source for unmanned aerial vehicles," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
    3. Somayeh Toghyani & Seyed Ali Atyabi & Xin Gao, 2021. "Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field," Energies, MDPI, vol. 14(9), pages 1-23, April.
    4. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    5. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    6. Li, Niansi & Liu, Xiaoyong & Yu, Bendong & Li, Liang & Xu, Jianqiang & Tan, Qiong, 2021. "Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions," Energy, Elsevier, vol. 219(C).
    7. Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
    8. Shi, Tao & Xu, Huijin, 2022. "Integration of hydrogen storage and heat storage in thermochemical reactors enhanced with optimized topological structures: Charging process," Applied Energy, Elsevier, vol. 327(C).
    9. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    10. Erika Michela Dematteis & Jussara Barale & Marta Corno & Alessandro Sciullo & Marcello Baricco & Paola Rizzi, 2021. "Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective," Energies, MDPI, vol. 14(19), pages 1-26, September.
    11. Cai, Haokun & Liu, Liping & Chen, Qiang & Lu, Ping & Dong, Jian, 2016. "Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride," Energy, Elsevier, vol. 99(C), pages 129-135.
    12. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    13. Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
    14. Zhou, Kehan & Liu, Zhiwei & Zhang, Xin & Liu, Hang & Meng, Nan & Huang, Jianmei & Qi, Mingjing & Song, Xizhen & Yan, Xiaojun, 2022. "A kW-level integrated propulsion system for UAV powered by PEMFC with inclined cathode flow structure design," Applied Energy, Elsevier, vol. 328(C).
    15. Xue, Xiaodong & Han, Wei & Xin, Yu & Liu, Changchun & Jin, Hongguang & Wang, Xiaodong, 2023. "Proposal and energetic and exergetic evaluation of a hydrogen production system with synergistic conversion of coal and solar energy," Energy, Elsevier, vol. 283(C).
    16. Alicia Triviño & José M. González-González & José A. Aguado, 2021. "Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review," Energies, MDPI, vol. 14(6), pages 1-21, March.
    17. Gurunadh Velidi & Chun Sang Yoo, 2023. "A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges," Energies, MDPI, vol. 16(9), pages 1-44, May.
    18. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.
    19. Jorge Sousa & Inês Azevedo & Cristina Camus & Luís Mendes & Carla Viveiros & Filipe Barata, 2024. "Decarbonizing Hard-to-Abate Sectors with Renewable Hydrogen: A Real Case Application to the Ceramics Industry," Energies, MDPI, vol. 17(15), pages 1-15, July.
    20. Joel Bertilsson & Lisa Göransson & Filip Johnsson, 2024. "Impact of Energy-Related Properties of Cities on Optimal Urban Energy System Design," Energies, MDPI, vol. 17(15), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:337:y:2023:i:c:s0306261923002465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.