IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5489-d1678906.html
   My bibliography  Save this article

Research on the Characteristics of Heavy Metal Pollution in Lake and Reservoir Sediments in China Based on Meta-Analysis

Author

Listed:
  • Huancheng Dai

    (School of Ecology and Environment, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
    Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Mingke Luo

    (National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Xia Jiang

    (National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Ecology and Environment, School of Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Xixi Li

    (National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Peng Zhang

    (School of Ecology and Environment, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

  • Yong Niu

    (National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

Abstract

To clarify the current state of heavy metal contamination in the sediments of lakes in China, the data on six heavy metals derived from the sediment samples of 71 lakes across China from 2003 to 2022 are collected in this study through meta-analysis. Uncertainty analysis is conducted using the Monte Carlo method to evaluate the heavy metals against cumulative characteristics, potential ecological risk, and toxicity indicators. The following conclusions are reached. (1) There is severe pollution in lake sediments in China. The concentrations of Cu, Pb, Zn, Ni, and Cd in lakes exceed their corresponding soil background values. Cr heavy metal contamination exceeded the soil background values in 54.5% of lakes. (2) Cd is the major pollutant in lake sediments across China, followed by Cu, Zn, Pb, Ni, and Cr in descending order. Lakes with higher ecological risk are predominantly concentrated in quadrants 2 and 3, indicating an overall high ecological risk status for Chinese lakes and significant potential ecological hazards. Pb and Cr are identified as the most toxic elements in lake sediments, with the lakes of higher toxicity mainly concentrated in quadrants 3 and 4. (3) Heavy metal pollution shows a significant trend of variation by region. The sources of heavy metals in lake sediments differ between the southern, central, and northern regions of China. In the lakes located in northern China, pollution is largely attributed to mining and industrial emissions, with agriculture as a less significant factor. In the central region, surface runoff and domestic sewage are the main contributors, while industrial and agricultural emissions play a minor role. In the south, industrial emission is the major source of pollution, with agricultural emission and natural factors being less significant.

Suggested Citation

  • Huancheng Dai & Mingke Luo & Xia Jiang & Xixi Li & Peng Zhang & Yong Niu, 2025. "Research on the Characteristics of Heavy Metal Pollution in Lake and Reservoir Sediments in China Based on Meta-Analysis," Sustainability, MDPI, vol. 17(12), pages 1-32, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5489-:d:1678906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li Wan & Liang Xu & Yongsheng Fu, 2016. "Contamination and Risk Assessment of Heavy Metals in Lake Bed Sediment of a Large Lake Scenic Area in China," IJERPH, MDPI, vol. 13(7), pages 1-12, July.
    2. Weiwei Shao & Dawen Yang & Heping Hu & Kenji Sanbongi, 2009. "Water Resources Allocation Considering the Water Use Flexible Limit to Water Shortage—A Case Study in the Yellow River Basin of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 869-880, March.
    3. Bai, Junhong & Cui, Baoshan & Chen, Bin & Zhang, Kejiang & Deng, Wei & Gao, Haifeng & Xiao, Rong, 2011. "Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China," Ecological Modelling, Elsevier, vol. 222(2), pages 301-306.
    4. Yong Niu & Wei Jiao & Hui Yu & Yuan Niu & Yong Pang & Xiangyang Xu & Xiaochun Guo, 2015. "Spatial Evaluation of Heavy Metals Concentrations in the Surface Sediment of Taihu Lake," IJERPH, MDPI, vol. 12(12), pages 1-12, November.
    5. Jessica Gurevitch & Julia Koricheva & Shinichi Nakagawa & Gavin Stewart, 2018. "Meta-analysis and the science of research synthesis," Nature, Nature, vol. 555(7695), pages 175-182, March.
    6. Jiwei Yang & Fuhong Sun & Hailei Su & Yanru Tao & Hong Chang, 2022. "Multiple Risk Assessment of Heavy Metals in Surface Water and Sediment in Taihu Lake, China," IJERPH, MDPI, vol. 19(20), pages 1-17, October.
    7. Soetaert, Karline & Petzoldt, Thomas, 2010. "Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oded Berger-Tal & Alison L Greggor & Biljana Macura & Carrie Ann Adams & Arden Blumenthal & Amos Bouskila & Ulrika Candolin & Carolina Doran & Esteban Fernández-Juricic & Kiyoko M Gotanda & Catherine , 2019. "Systematic reviews and maps as tools for applying behavioral ecology to management and policy," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(1), pages 1-8.
    2. Zhou, W. & O’Neill, E. & Moncaster, A. & Reiner, D. & Guthrie, P., 2019. "Applying Bayesian Model Averaging to Characterise Urban Residential Stock Turnover Dynamics," Cambridge Working Papers in Economics 1986, Faculty of Economics, University of Cambridge.
    3. Phu Nguyen-Van & Anne Stenger & Tuyen Tiet, 2021. "Social incentive factors in interventions promoting sustainable behaviors: A meta-analysis," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-27, December.
    4. Hanson, Paul C. & Stillman, Aviah B. & Jia, Xiaowei & Karpatne, Anuj & Dugan, Hilary A. & Carey, Cayelan C. & Stachelek, Joseph & Ward, Nicole K. & Zhang, Yu & Read, Jordan S. & Kumar, Vipin, 2020. "Predicting lake surface water phosphorus dynamics using process-guided machine learning," Ecological Modelling, Elsevier, vol. 430(C).
    5. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    6. Zuzana Irsova & Hristos Doucouliagos & Tomas Havranek & T. D. Stanley, 2024. "Meta‐analysis of social science research: A practitioner's guide," Journal of Economic Surveys, Wiley Blackwell, vol. 38(5), pages 1547-1566, December.
    7. Alexander L. Brown & Taisuke Imai & Ferdinand M. Vieider & Colin F. Camerer, 2024. "Meta-analysis of Empirical Estimates of Loss Aversion," Journal of Economic Literature, American Economic Association, vol. 62(2), pages 485-516, June.
    8. Hannah Al Ali & Alireza Daneshkhah & Abdesslam Boutayeb & Zindoga Mukandavire, 2022. "Examining Type 1 Diabetes Mathematical Models Using Experimental Data," IJERPH, MDPI, vol. 19(2), pages 1-20, January.
    9. Taffi, Marianna & Paoletti, Nicola & Liò, Pietro & Pucciarelli, Sandra & Marini, Mauro, 2015. "Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea," Ecological Modelling, Elsevier, vol. 306(C), pages 205-215.
    10. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    11. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Ruhaimatu Abudu & Raj Bridgelall, 2024. "Autonomous Ships: A Thematic Review," World, MDPI, vol. 5(2), pages 1-17, April.
    13. Iolanda-Veronica Ganea & Ramona Bălc & Robert-Csaba Begy & Ioan Tanțău & Delia Maria Gligor, 2023. "Combining Contamination Indices and Multivariate Statistical Analysis for Metal Pollution Evaluation during the Last Century in Lacustrine Sediments of Lacu Sărat Lake, Romania," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
    14. Lukas Hafner & Maxime Pichon & Christophe Burucoa & Sophie H. A. Nusser & Alexandra Moura & Marc Garcia-Garcera & Marc Lecuit, 2021. "Listeria monocytogenes faecal carriage is common and depends on the gut microbiota," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    15. Guiyao Zhou & Nico Eisenhauer & Zhenggang Du & Manuel Esteban Lucas-Borja & Kaiyan Zhai & Miguel Berdugo & Huimin Duan & Han Wu & Shengen Liu & Daniel Revillini & Tadeo Sáez-Sandino & Hua Chai & Xuhui, 2025. "Fire-driven disruptions of global soil biochemical relationships," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    16. Kulinskaya, Elena & Mah, Eung Yaw, 2021. "Simulation results on the performance of statistical methods in cumulative meta analysis," MetaArXiv 8t4pf, Center for Open Science.
    17. Valentina Gallina & Silvia Torresan & Alex Zabeo & Andrea Critto & Thomas Glade & Antonio Marcomini, 2020. "A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones," Sustainability, MDPI, vol. 12(9), pages 1-28, May.
    18. Christopher Hansen & Holger Steinmetz & Jörn Block, 2022. "How to conduct a meta-analysis in eight steps: a practical guide," Management Review Quarterly, Springer, vol. 72(1), pages 1-19, February.
    19. Fujii, Hidemichi & Kaneko, Shinji & Managi, Shunsuke, 2010. "Changes in environmentally sensitive productivity and technological modernization in China's iron and steel industry in the 1990s," Environment and Development Economics, Cambridge University Press, vol. 15(4), pages 485-504, August.
    20. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5489-:d:1678906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.