IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14204-d1247799.html
   My bibliography  Save this article

Responses of Wheat Protein Content and Protein Yield to Future Climate Change in China during 2041–2060

Author

Listed:
  • Wenqiang Xie

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Xiaodong Yan

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

Abstract

The nutritional value of wheat is measured by its grain protein content (PC) and is sensitive to climate change. The potential variations of future wheat PC under the influence of global warming varied among studies. Wheat PC data from China since 1980 were collected to explore the relationship between wheat PC and climatic variables, and Coupled Model Intercomparison Project 6 (CMIP6) models were used to project wheat PC and protein yield (PY) in China from 2041–2060. The results show that climatic variables during wheat heading to the maturation period have critical effects on wheat PC. The mean maximum air temperature and mean diurnal temperature range exhibited the greatest positive effects on wheat PC. The mean PC will increase under all shared socioeconomic pathway (SSP) scenarios, with significant rises in North China and the Guanzhong Plain, but a decrease in the Yangtze River Basin. Wheat PY with adaptations will increase, while that without adaptations will decrease. Global warming will increase wheat PC but decrease PY and protein production. These impacts could be mitigated by applying adaptation management. Our results enhance our understanding of wheat PC variation patterns and the possible response of wheat to future climate changes, and highlight the importance of applying suitable adaptations.

Suggested Citation

  • Wenqiang Xie & Xiaodong Yan, 2023. "Responses of Wheat Protein Content and Protein Yield to Future Climate Change in China during 2041–2060," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14204-:d:1247799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Xiang & Takahashi, Taro & Suzuki, Nobuhiro & Kaiser, Harry M., 2011. "The impact of climate change on maize yields in the United States and China," Agricultural Systems, Elsevier, vol. 104(4), pages 348-353, April.
    2. Wenqiang Xie & Shuangshuang Wang & Xiaodong Yan, 2022. "Evaluation and Projection of Diurnal Temperature Range in Maize Cultivation Areas in China Based on CMIP6 Models," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    3. Jessica Gurevitch & Julia Koricheva & Shinichi Nakagawa & Gavin Stewart, 2018. "Meta-analysis and the science of research synthesis," Nature, Nature, vol. 555(7695), pages 175-182, March.
    4. Zheng, Zhen & Hoogenboom, Gerrit & Cai, Huanjie & Wang, Zikai, 2020. "Winter wheat production on the Guanzhong Plain of Northwest China under projected future climate with SimCLIM," Agricultural Water Management, Elsevier, vol. 239(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuangshuang Wang & Wenqiang Xie & Xiaodong Yan, 2022. "Effects of Future Climate Change on Citrus Quality and Yield in China," Sustainability, MDPI, vol. 14(15), pages 1-18, July.
    2. Phu Nguyen-Van & Anne Stenger & Tuyen Tiet, 2021. "Social incentive factors in interventions promoting sustainable behaviors: A meta-analysis," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-27, December.
    3. Lukas Hafner & Maxime Pichon & Christophe Burucoa & Sophie H. A. Nusser & Alexandra Moura & Marc Garcia-Garcera & Marc Lecuit, 2021. "Listeria monocytogenes faecal carriage is common and depends on the gut microbiota," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Assa, Maganga Mulagha & Gebremariam, Gebrelibanos G. & Mapemba, Lawrence D., 2013. "A cross-region study: climate change adaptation in Malawi's agro-based systems," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 161304, African Association of Agricultural Economists (AAAE).
    5. Trumbo, Jennifer L. & Tonn, Bruce E., 2016. "Biofuels: A sustainable choice for the United States' energy future?," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 147-161.
    6. Fabio De Felice & Ilaria Baffo & Antonella Petrillo, 2022. "Critical Infrastructures Overview: Past, Present and Future," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    7. Na Wang & Debra K. Creedy & Mingna Zhang & Hong Lu & Elizabeth Elder & Jyai Allen & Li Guo & Qian Xiao & Jenny Gamble, 2022. "Designing a Needs-Oriented Psychological Intervention for Chinese Women Undergoing an Abortion," IJERPH, MDPI, vol. 20(1), pages 1-12, December.
    8. Antonino Malacrinò & Victoria A Sadowski & Tvisha K Martin & Nathalia Cavichiolli de Oliveira & Ian J Brackett & James D Feller & Kristian J Harris & Orlando Combita Heredia & Rosa Vescio & Alison E B, 2020. "Biological invasions alter environmental microbiomes: A meta-analysis," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-12, October.
    9. Fanta F. Jabbi & Yu’e Li & Tianyi Zhang & Wang Bin & Waseem Hassan & You Songcai, 2021. "Impacts of Temperature Trends and SPEI on Yields of Major Cereal Crops in the Gambia," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    10. Fahui Jiang & Shangshu Huang & Yan Wu & Mahbub Ul Islam & Fangjin Dong & Zhen Cao & Guohui Chen & Yuming Guo, 2022. "A Large-Scale Dataset of Conservation and Deep Tillage in Mollisols, Northeast Plain, China," Data, MDPI, vol. 8(1), pages 1-15, December.
    11. Fátima L. Vieira & Paulo A. Vieira & Denis A. Coelho, 2019. "A Data-Driven Approach to Development of a Taxonomy Framework for Triple Bottom Line Metrics," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    12. Matthew J Page & Joanne E McKenzie & Patrick M Bossuyt & Isabelle Boutron & Tammy C Hoffmann & Cynthia D Mulrow & Larissa Shamseer & Jennifer M Tetzlaff & Elie A Akl & Sue E Brennan & Roger Chou & Jul, 2021. "The PRISMA 2020 statement: An updated guideline for reporting systematic reviews," PLOS Medicine, Public Library of Science, vol. 18(3), pages 1-15, March.
    13. Zuzana Irsova & Hristos Doucouliagos & Tomas Havranek & T. D. Stanley, 2023. "Meta-Analysis of Social Science Research: A Practitioner´s Guide," Working Papers IES 2023/25, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2023.
    14. Pingping Luo & Yue Zheng & Yiyi Wang & Shipeng Zhang & Wangqi Yu & Xi Zhu & Aidi Huo & Zhenhong Wang & Bin He & Daniel Nover, 2022. "Comparative Assessment of Sponge City Constructing in Public Awareness, Xi’an, China," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    15. Lifeng Lin, 2018. "Bias caused by sampling error in meta-analysis with small sample sizes," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-19, September.
    16. Shannon G. Klein & Cassandra Roch & Carlos M. Duarte, 2024. "Systematic review of the uncertainty of coral reef futures under climate change," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Cinar, Ozan & Nakagawa, Shinichi & Viechtbauer, Wolfgang, 2020. "Phylogenetic multilevel meta-analysis: A simulation study on the importance of modeling the phylogeny," EcoEvoRxiv su4zv, Center for Open Science.
    18. Zhao, Jin & Yang, Xiaoguang & Liu, Zhijuan & Pullens, Johannes W.M. & Chen, Ji & Marek, Gary W. & Chen, Yong & Lv, Shuo & Sun, Shuang, 2020. "Greater maize yield improvements in low/unstable yield zones through recommended nutrient and water inputs in the main cropping regions, China," Agricultural Water Management, Elsevier, vol. 232(C).
    19. Yang, Chenyao & Fraga, Helder & Ieperen, Wim Van & Santos, João Andrade, 2017. "Assessment of irrigated maize yield response to climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 184(C), pages 178-190.
    20. He, Yong & Liang, Hao & Hu, Kelin & Wang, Hongyuan & Hou, Lingling, 2018. "Modeling nitrogen leaching in a spring maize system under changing climate and genotype scenarios in arid Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 210(C), pages 316-323.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14204-:d:1247799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.