IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p5167-d1671804.html
   My bibliography  Save this article

Energy Optimization Gaps in Hotel Retrofits for Subtropical Climates

Author

Listed:
  • Milen Balbis Morejón

    (Department of Energy, Universidad de la Costa, Calle 58 No. 55-66, Barranquilla 080002, Colombia)

  • Oskar Cabello Justafré

    (Departament of Mechanical Engineering, Universidad de Cienfuegos, Carretera a Rodas, km 4, Cienfuegos 5GFX+2QG, CS, Cuba)

  • Juan José Cabello Eras

    (Departament of Mechanical Engineering, Universidad de Córdoba, Carrera 6 No. 77-305, Montería 230002, Colombia)

  • Javier M. Rey-Hernández

    (Department of Mechanical Engineering, Fluid Mechanics and Thermal Engines, Engineering School, University of Malaga (UMa), 29016 Málaga, Spain
    GIRTER Research Group, Consolidated Research Unit (UIC053) of Castile and Leon, 47011 Valladolid, Spain)

  • Francisco Javier Rey-Martínez

    (GIRTER Research Group, Consolidated Research Unit (UIC053) of Castile and Leon, 47011 Valladolid, Spain
    Department of Energy and Fluid Mechanics, Engineering School (EII), University of Valladolid, Spain, Paseo del Cauce 59, 47011 Valladolid, Spain)

Abstract

This study investigates the significant energy optimization gaps in hotel retrofits in a subtropical climate, quantifying the missed energy-saving opportunities through advanced simulation techniques. Utilizing Design Builder software, the energy consumption of a hotel in Cienfuegos (Cuba) was assessed both before and after renovation, focusing on passive strategies (e.g., replacing single-glazed windows with double glazing) and active interventions (e.g., upgrading the air conditioning system). The results reveal that current retrofit strategies fail to reduce energy consumption substantially. Replacing single-glazed windows with double glazing could reduce annual energy use by 42%. Additionally, upgrading the existing chiller system or implementing a Variable Refrigerant Flow (VRF) system could result in 40% and 59.5% energy savings, respectively. The most significant energy reduction, 71%, is achieved when both interventions—upgrading the chiller and installing double-glazed windows—are implemented, reducing the energy consumption index (ECI) to a quarter of its current value. The life cycle cost (LCC) analysis demonstrates that energy-efficient investments offer considerable economic returns. For instance, an investment of USD 508,600 in a modern chiller system would generate net savings of USD 1,373,500 over its operational lifespan. This study underscores substantial economic and environmental losses from omitting energy efficiency considerations in hotel renovations. It calls for integrating comprehensive energy optimization strategies in retrofit planning, with each dollar invested in energy-saving measures potentially yielding USD 2.5 in life cycle savings. This approach is crucial for global hotel markets facing energy challenges.

Suggested Citation

  • Milen Balbis Morejón & Oskar Cabello Justafré & Juan José Cabello Eras & Javier M. Rey-Hernández & Francisco Javier Rey-Martínez, 2025. "Energy Optimization Gaps in Hotel Retrofits for Subtropical Climates," Sustainability, MDPI, vol. 17(11), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5167-:d:1671804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/5167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/5167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Milen Balbis-Morejón & Juan J. Cabello-Eras & Javier M. Rey-Hernández & Francisco J. Rey-Martínez, 2021. "Energy Evaluation and Energy Savings Analysis with the 2 Selection of AC Systems in an Educational Building," Sustainability, MDPI, vol. 13(14), pages 1-10, July.
    2. Luis Angel Iturralde Carrera & Andrés Lorenzo Álvarez González & Juvenal Rodríguez-Reséndiz & José Manuel Álvarez-Alvarado, 2023. "Selection of the Energy Performance Indicator for Hotels Based on ISO 50001: A Case Study," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    3. U. G. D. Madushika & Thanuja Ramachandra & Gayani Karunasena & P. A. D. S. Udakara, 2023. "Energy Retrofitting Technologies of Buildings: A Review-Based Assessment," Energies, MDPI, vol. 16(13), pages 1-16, June.
    4. Rodrigo Schons Arenhart & Adriano Mendonça Souza & Roselaine Ruviaro Zanini, 2022. "Energy Use and Its Key Factors in Hotel Chains," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    5. Liu, Mingxi & Shi, Yang & Fang, Fang, 2012. "A new operation strategy for CCHP systems with hybrid chillers," Applied Energy, Elsevier, vol. 95(C), pages 164-173.
    6. Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
    7. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    8. Luis Martin Dibene-Arriola & Fátima Maciel Carrillo-González & Sandra Quijas & María Carolina Rodríguez-Uribe, 2021. "Energy Efficiency Indicators for Hotel Buildings," Sustainability, MDPI, vol. 13(4), pages 1-11, February.
    9. Manzan Marco & Atlas Ramezani & Alex Buoite Stella & Amedeo Pezzi, 2023. "Climate Change and Building Renovation: Effects on Energy Consumption and Internal Comfort in a Social Housing Building in Northern Italy," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georges Atallah & Faris Tarlochan, 2021. "Comparison between Variable and Constant Refrigerant Flow Air Conditioning Systems in Arid Climate: Life Cycle Cost Analysis and Energy Savings," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
    2. Dimitris Damigos, 2023. "How Much Are Consumers Willing to Pay for a Greener Hotel Industry? A Systematic Literature Review," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    3. Fabrizio Cumo & Elisa Pennacchia & Claudia Zylka, 2023. "Energy-Efficient Solutions: A Multi-Criteria Decision Aid Tool to Achieve the Targets of the European EPDB Directive," Energies, MDPI, vol. 16(17), pages 1-18, August.
    4. Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
    5. Roberta Pernetti & Riccardo Pinotti & Roberto Lollini, 2021. "Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    6. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    7. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.
    8. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    9. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Zhang, Han & Han, Zhonghe & Wu, Di & Li, Peng & Li, Peng, 2023. "Energy optimization and performance analysis of a novel integrated energy system coupled with solar thermal unit and preheated organic cycle under extended following electric load strategy," Energy, Elsevier, vol. 272(C).
    11. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    12. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    13. Shengyuan Guo & Wanjiang Wang & Yihuan Zhou, 2022. "Research on Energy Saving and Economy of Old Buildings Based on Parametric Design: A Case Study of a Hospital in Linyi City, Shandong Province," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    14. Robert C. Vella & Charles Yousif & Francisco Javier Rey Martinez & Javier María Rey Hernandez, 2022. "Prioritising Passive Measures over Air Conditioning to Achieve Thermal Comfort in Mediterranean Baroque Churches," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    15. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    16. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    18. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    19. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    20. Laura Canale & Marianna De Monaco & Biagio Di Pietra & Giovanni Puglisi & Giorgio Ficco & Ilaria Bertini & Marco Dell’Isola, 2021. "Estimating the Smart Readiness Indicator in the Italian Residential Building Stock in Different Scenarios," Energies, MDPI, vol. 14(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5167-:d:1671804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.