IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4946-d1666175.html
   My bibliography  Save this article

Assessing the Effects of Hydraulic Fracturing on Streamflow Through Coupled Human–Hydrological Modeling

Author

Listed:
  • Zhulu Lin

    (Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58108, USA)

  • Tong Lin

    (Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND 58108, USA)

  • Haochi Zheng

    (Department of Earth System Science and Policy, University of North Dakota, Grand Forks, ND 58202, USA)

  • Siew Hoon Lim

    (Department of Agribusiness and Applied Economics, North Dakota State University, Fargo, ND 58108, USA)

Abstract

The Devonian–Mississippian Bakken Formation in western North Dakota (USA) is one of the largest hydraulic fracturing oil fields in the world. Streamflow analysis showed that the average seven-day low flows in the region surprisingly increased during the recent oil boom. The increase, ranging from 88% to 3648%, was largely due to the fact that the region had received 20% more precipitation than normal during that time period. To study the impact of hydraulic fracturing at Bakken on regional streamflow under normal precipitation and other scenarios, we integrated a socioeconomic agent-based model that simulates the hydraulic fracturing water uses with a hydrological model that simulates the streamflow in the Little Muddy River in the region. Our results showed that compared to the existing (baseline) scenario, the average seven-day low flows in the Little Muddy River decreased from 18% to 88%, while the annual average flows did not change much under drier to normal precipitation scenarios. Our research also finds that climate factors and water management policies were more influential than hydraulic fracturing and population growth. The emergency water management policies implemented at the peak of shale oil development had mitigated the hydraulic fracturing impact on regional streamflow at low-flow conditions and improved water resource sustainability in the region.

Suggested Citation

  • Zhulu Lin & Tong Lin & Haochi Zheng & Siew Hoon Lim, 2025. "Assessing the Effects of Hydraulic Fracturing on Streamflow Through Coupled Human–Hydrological Modeling," Sustainability, MDPI, vol. 17(11), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4946-:d:1666175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ficko, Andrej & Boncina, Andrej, 2013. "Probabilistic typology of management decision making in private forest properties," Forest Policy and Economics, Elsevier, vol. 27(C), pages 34-43.
    2. Qingxu Huang & Dawn C Parker & Tatiana Filatova & Shipeng Sun, 2014. "A Review of Urban Residential Choice Models Using Agent-Based Modeling," Environment and Planning B, , vol. 41(4), pages 661-689, August.
    3. Kamel Louhichi & Aymeric Ricome & Sergio Gomez y Paloma, 2022. "Impacts of agricultural taxation in Sub‐Saharan Africa: Insights from agricultural produce cess in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 53(5), pages 671-686, September.
    4. Bindewald, Eckart, 2017. "A survey suggests individual priorities are virtually unique: Implications for group dynamics, goal achievement and ecology," Ecological Modelling, Elsevier, vol. 362(C), pages 69-79.
    5. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.
    6. Xia, Min & Zhang, Yanyuan & Zhang, Zihong & Liu, Jingjie & Ou, Weixin & Zou, Wei, 2020. "Modeling agricultural land use change in a rapid urbanizing town: Linking the decisions of government, peasant households and enterprises," Land Use Policy, Elsevier, vol. 90(C).
    7. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    8. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    9. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    10. Handi Chandra‐Putra & Clinton J. Andrews, 2020. "An integrated model of real estate market responses to coastal flooding," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 424-435, April.
    11. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    12. Panagiotis Reklitis & Damianos P. Sakas & Panagiotis Trivellas & Giannis T. Tsoulfas, 2021. "Performance Implications of Aligning Supply Chain Practices with Competitive Advantage: Empirical Evidence from the Agri-Food Sector," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    13. Jonas Friege & Georg Holtz & Emile Chappin, 2016. "Exploring Homeowners’ Insulation Activity," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-4.
    14. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    15. Gong, Chengzhu & Yu, Shiwei & Zhu, Kejun & Hailu, Atakelty, 2016. "Evaluating the influence of increasing block tariffs in residential gas sector using agent-based computational economics," Energy Policy, Elsevier, vol. 92(C), pages 334-347.
    16. Egger, Claudine & Plutzar, Christoph & Mayer, Andreas & Dullinger, Iwona & Dullinger, Stefan & Essl, Franz & Gattringer, Andreas & Bohner, Andreas & Haberl, Helmut & Gaube, Veronika, 2022. "Using the SECLAND model to project future land-use until 2050 under climate and socioeconomic change in the LTSER region Eisenwurzen (Austria)," Ecological Economics, Elsevier, vol. 201(C).
    17. Nicholas R. Magliocca, 2015. "Model-Based Synthesis of Locally Contingent Responses to Global Market Signals," Land, MDPI, vol. 4(3), pages 1-35, September.
    18. Jiang, Xue & Li, Bingxin & Zhao, Hongyu & Zhang, Qiqi & Song, Xiaoya & Zhang, Haoran, 2022. "Examining the spatial simulation and land-use reorganisation mechanism of agricultural suburban settlements using a cellular-automata and agent-based model: Six settlements in China," Land Use Policy, Elsevier, vol. 120(C).
    19. Wan, Nian-Feng & Jiang, Jie-Xian & Li, Bo, 2014. "Modeling ecological two-sidedness for complex ecosystems," Ecological Modelling, Elsevier, vol. 287(C), pages 36-43.
    20. Camelia Delcea & Liviu-Adrian Cotfas & Mostafa Salari & R. John Milne, 2018. "Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling," Sustainability, MDPI, vol. 10(12), pages 1-28, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4946-:d:1666175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.