IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4623-d188272.html
   My bibliography  Save this article

Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling

Author

Listed:
  • Camelia Delcea

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010552 Bucharest, Romania)

  • Liviu-Adrian Cotfas

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010552 Bucharest, Romania)

  • Mostafa Salari

    (Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada)

  • R. John Milne

    (David D. Reh School of Business, Clarkson University, 333 B.H. Snell Hall, Potsdam, NY 13699, USA)

Abstract

Research related to creating new and improved airplane boarding methods has seen continuous advancement, in recent years, while most of the airline companies have remained committed to the traditional boarding methods. Among the most-used boarding methods, around the world, are back-to-front and random boarding with and without assigned seats. While the other boarding methods used in practice possess strict rules for passengers’ behavior, random without assigned seats is dependent on the passengers own way of choosing the “best” seats. The aim of this paper is to meticulously model the passengers’ behavior, especially, in random boarding without assigned seats and to test its efficiency in terms of boarding time and interferences, in comparison with the other commonly-adopted methods (random boarding with assigned seats, window-middle-aisle (WilMA), back-to-front, reverse pyramid, etc.). One of the main challenges in our endeavor was the identification of the real human passengers’ way of reasoning, when selecting their seats, and creating a model in which the agents possess preferences and make decisions, as close to those decisions made by the human passengers, as possible. We model their choices based on completed questionnaires from three hundred and eighty-seven human subjects. This paper describes the resulting agent-based model and results from the simulations.

Suggested Citation

  • Camelia Delcea & Liviu-Adrian Cotfas & Mostafa Salari & R. John Milne, 2018. "Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4623-:d:188272
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Notomista, Gennaro & Selvaggio, Mario & Sbrizzi, Fiorentina & Di Maio, Gabriella & Grazioso, Stanislao & Botsch, Michael, 2016. "A fast airplane boarding strategy using online seat assignment based on passenger classification," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 140-149.
    2. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    3. Eitan Bachmat & Daniel Berend & Luba Sapir & Steven Skiena & Natan Stolyarov, 2009. "Analysis of Airplane Boarding Times," Operations Research, INFORMS, vol. 57(2), pages 499-513, April.
    4. Van Landeghem, H. & Beuselinck, A., 2002. "Reducing passenger boarding time in airplanes: A simulation based approach," European Journal of Operational Research, Elsevier, vol. 142(2), pages 294-308, October.
    5. Nyquist, David C. & McFadden, Kathleen L., 2008. "A study of the airline boarding problem," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 197-204.
    6. Camelia Delcea & Liviu-Adrian Cotfas & Ramona Paun, 2018. "Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    7. Bazargan, Massoud, 2007. "A linear programming approach for aircraft boarding strategy," European Journal of Operational Research, Elsevier, vol. 183(1), pages 394-411, November.
    8. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    9. Milne, R. John & Salari, Mostafa, 2016. "Optimization of assigning passengers to seats on airplanes based on their carry-on luggage," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 104-110.
    10. Steffen, Jason H., 2008. "Optimal boarding method for airline passengers," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 146-150.
    11. Camelia Delcea & Liviu-Adrian Cotfas & Liliana Crăciun & Anca Gabriela Molanescu, 2018. "Are Seat and Aisle Interferences Affecting the Overall Airplane Boarding Time? An Agent-Based Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    12. Ren, Xinhui & Xu, Xiaobing, 2018. "Experimental analyses of airplane boarding based on interference classification," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 55-63.
    13. Bekir Yildiz & Peter Förster & Thomas Feuerle & Peter Hecker & Stefan Bugow & Stefan Helber, 2018. "A Generic Approach to Analyze the Impact of a Future Aircraft Design on the Boarding Process," Energies, MDPI, vol. 11(2), pages 1-12, January.
    14. Milne, R. John & Kelly, Alexander R., 2014. "A new method for boarding passengers onto an airplane," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 93-100.
    15. Camelia Delcea & Liviu-Adrian Cotfas & Nora Chiriță & Ionuț Nica, 2018. "A Two-Door Airplane Boarding Approach When Using Apron Buses," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    16. Menkes H. L. van den Briel & J. René Villalobos & Gary L. Hogg & Tim Lindemann & Anthony V. Mulé, 2005. "America West Airlines Develops Efficient Boarding Strategies," Interfaces, INFORMS, vol. 35(3), pages 191-201, June.
    17. Steffen, Jason H. & Hotchkiss, Jon, 2012. "Experimental test of airplane boarding methods," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 64-67.
    18. Qiang, Sheng-Jie & Jia, Bin & Xie, Dong-Fan & Gao, Zi-You, 2014. "Reducing airplane boarding time by accounting for passengers' individual properties: A simulation based on cellular automaton," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 42-47.
    19. Yiannis E. Spanos & Spyros Lioukas, 2001. "An examination into the causal logic of rent generation: contrasting Porter's competitive strategy framework and the resource‐based perspective," Strategic Management Journal, Wiley Blackwell, vol. 22(10), pages 907-934, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camelia Delcea & Liviu-Adrian Cotfas & Carmen Lenuța Trică & Liliana Crăciun & Anca Gabriela Molanescu, 2019. "Modeling the Consumers Opinion Influence in Online Social Media in the Case of Eco-friendly Products," Sustainability, MDPI, vol. 11(6), pages 1-32, March.
    2. Ștefan Ionescu & Nora Chiriță & Ionuț Nica & Camelia Delcea, 2023. "An Analysis of Residual Financial Contagion in Romania’s Banking Market for Mortgage Loans," Sustainability, MDPI, vol. 15(15), pages 1-32, August.
    3. Milne, R. John & Delcea, Camelia & Cotfas, Liviu-Adrian & Salari, Mostafa, 2019. "New methods for two-door airplane boarding using apron buses," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    4. Kisiel, Tomasz, 2020. "Resilience of passenger boarding strategies to priority fares offered by airlines," Journal of Air Transport Management, Elsevier, vol. 87(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milne, R. John & Delcea, Camelia & Cotfas, Liviu-Adrian & Salari, Mostafa, 2019. "New methods for two-door airplane boarding using apron buses," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    2. Salari, Mostafa & Milne, R. John & Delcea, Camelia & Kattan, Lina & Cotfas, Liviu-Adrian, 2020. "Social distancing in airplane seat assignments," Journal of Air Transport Management, Elsevier, vol. 89(C).
    3. Camelia Delcea & Liviu-Adrian Cotfas & Liliana Crăciun & Anca Gabriela Molanescu, 2018. "Are Seat and Aisle Interferences Affecting the Overall Airplane Boarding Time? An Agent-Based Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    4. Camelia Delcea & Liviu-Adrian Cotfas & Nora Chiriță & Ionuț Nica, 2018. "A Two-Door Airplane Boarding Approach When Using Apron Buses," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    5. Ren, Xinhui & Zhou, Xiyu & Xu, Xiaobing, 2020. "A new model of luggage storage time while boarding an airplane: An experimental test," Journal of Air Transport Management, Elsevier, vol. 84(C).
    6. Zeineddine, Hassan, 2021. "Reducing the effect of passengers’ non-compliance with aircraft boarding rules," Journal of Air Transport Management, Elsevier, vol. 92(C).
    7. Ren, Xinhui & Xu, Xiaobing, 2018. "Experimental analyses of airplane boarding based on interference classification," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 55-63.
    8. Michael Schultz & Jörg Fuchte, 2020. "Evaluation of Aircraft Boarding Scenarios Considering Reduced Transmissions Risks," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    9. Tang, Tie-Qiao & Yang, Shao-Peng & Ou, Hui & Chen, Liang & Huang, Hai-Jun, 2018. "An aircraft boarding model accounting for group behavior," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 182-189.
    10. Schultz, Michael & Soolaki, Majid & Salari, Mostafa & Bakhshian, Elnaz, 2023. "A combined optimization–simulation approach for modified outside-in boarding under COVID-19 regulations including limited baggage compartment capacities," Journal of Air Transport Management, Elsevier, vol. 106(C).
    11. Camelia Delcea & Liviu-Adrian Cotfas & Ramona Paun, 2018. "Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    12. Michael Schultz & Michael Schmidt, 2018. "Advancements in Passenger Processes at Airports from Aircraft Perspective," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    13. Zeineddine, Hassan, 2017. "A dynamically optimized aircraft boarding strategy," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 144-151.
    14. Wittmann, Jürgen, 2019. "Customer-oriented optimization of the airplane boarding process," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 31-39.
    15. Schultz, Michael & Evler, Jan & Asadi, Ehsan & Preis, Henning & Fricke, Hartmut & Wu, Cheng-Lung, 2020. "Future aircraft turnaround operations considering post-pandemic requirements," Journal of Air Transport Management, Elsevier, vol. 89(C).
    16. Qiang, Sheng-Jie & Jia, Bin & Jiang, Rui & Huang, Qing-Xia & Radwan, Essam & Gao, Zi-You & Wang, Yu-Qing, 2016. "Symmetrical design of strategy-pairs for enplaning and deplaning an airplane," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 52-60.
    17. Hutter, Leonie & Jaehn, Florian & Neumann, Simone, 2019. "Influencing factors on airplane boarding times," Omega, Elsevier, vol. 87(C), pages 177-190.
    18. Kisiel, Tomasz, 2020. "Resilience of passenger boarding strategies to priority fares offered by airlines," Journal of Air Transport Management, Elsevier, vol. 87(C).
    19. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    20. Mostafa Salari & R. John Milne & Lina Kattan, 2019. "Airplane boarding optimization considering reserved seats and passengers’ carry-on bags," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 806-823, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4623-:d:188272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.