IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i13p5329-d379019.html
   My bibliography  Save this article

Evaluation of Aircraft Boarding Scenarios Considering Reduced Transmissions Risks

Author

Listed:
  • Michael Schultz

    (Institute of Logistics and Aviation, Dresden University of Technology, 01069 Dresden, Germany
    These authors contributed equally to this work.)

  • Jörg Fuchte

    (Diehl Aviation, 21129 Hamburg, Germany
    These authors contributed equally to this work.)

Abstract

Air travel appears as particularly hazardous in a pandemic situation, since infected people can travel worldwide and could cause new breakouts in remote locations. The confined space conditions in the aircraft cabin necessitate a small physical distance between passengers and hence may boost virus transmissions. In our contribution, we implemented a transmission model in a virtual aircraft environment to evaluate the individual interactions between passengers during aircraft boarding and deboarding. Since no data for the transmission is currently available, we reasonably calibrated our model using a sample case from 2003. The simulation results show that standard boarding procedures create a substantial number of possible transmissions if a contagious passenger is present. The introduction of physical distances between passengers decreases the number of possible transmissions by approx. 75% for random boarding sequences, and could further decreased by more strict reduction of hand luggage items (less time for storage, compartment space is always available). If a second door is used for boarding and deboarding, the standard boarding times could be reached. Individual boarding strategies (by seat) could reduce the transmission potential to a minimum, but demand for complex pre-sorting of passengers. Our results also exhibit that deboarding consists of the highest transmission potential and only minor benefits from distance rules and hand luggage regulations.

Suggested Citation

  • Michael Schultz & Jörg Fuchte, 2020. "Evaluation of Aircraft Boarding Scenarios Considering Reduced Transmissions Risks," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5329-:d:379019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/13/5329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/13/5329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eitan Bachmat & Daniel Berend & Luba Sapir & Steven Skiena & Natan Stolyarov, 2009. "Analysis of Airplane Boarding Times," Operations Research, INFORMS, vol. 57(2), pages 499-513, April.
    2. Van Landeghem, H. & Beuselinck, A., 2002. "Reducing passenger boarding time in airplanes: A simulation based approach," European Journal of Operational Research, Elsevier, vol. 142(2), pages 294-308, October.
    3. Nyquist, David C. & McFadden, Kathleen L., 2008. "A study of the airline boarding problem," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 197-204.
    4. Bazargan, Massoud, 2007. "A linear programming approach for aircraft boarding strategy," European Journal of Operational Research, Elsevier, vol. 183(1), pages 394-411, November.
    5. Milne, R. John & Delcea, Camelia & Cotfas, Liviu-Adrian & Salari, Mostafa, 2019. "New methods for two-door airplane boarding using apron buses," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    6. Zeineddine, Hassan, 2017. "A dynamically optimized aircraft boarding strategy," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 144-151.
    7. Milne, R. John & Salari, Mostafa, 2016. "Optimization of assigning passengers to seats on airplanes based on their carry-on luggage," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 104-110.
    8. Steffen, Jason H., 2008. "Optimal boarding method for airline passengers," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 146-150.
    9. Miura, Ayako & Nishinari, Katsuhiro, 2017. "A passenger distribution analysis model for the perceived time of airplane boarding/deboarding, utilizing an ex-Gaussian distribution," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 44-49.
    10. Milne, R. John & Kelly, Alexander R., 2014. "A new method for boarding passengers onto an airplane," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 93-100.
    11. Vicki Stover Hertzberg & Howard Weiss & Lisa Elon & Wenpei Si & Sharon L. Norris & The FlyHealthy Research Team, 2018. "Behaviors, movements, and transmission of droplet-mediated respiratory diseases during transcontinental airline flights," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(14), pages 3623-3627, April.
    12. Menkes H. L. van den Briel & J. René Villalobos & Gary L. Hogg & Tim Lindemann & Anthony V. Mulé, 2005. "America West Airlines Develops Efficient Boarding Strategies," Interfaces, INFORMS, vol. 35(3), pages 191-201, June.
    13. Gwynne, S.M.V. & Senarath Yapa, U. & Codrington, L. & Thomas, J.R. & Jennings, S. & Thompson, A.J.L. & Grewal, A., 2018. "Small-scale trials on passenger microbehaviours during aircraft boarding and deplaning procedures," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 115-133.
    14. Steffen, Jason H. & Hotchkiss, Jon, 2012. "Experimental test of airplane boarding methods," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 64-67.
    15. Qiang, Sheng-Jie & Jia, Bin & Xie, Dong-Fan & Gao, Zi-You, 2014. "Reducing airplane boarding time by accounting for passengers' individual properties: A simulation based on cellular automaton," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 42-47.
    16. Wittmann, Jürgen, 2019. "Customer-oriented optimization of the airplane boarding process," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 31-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hélio Moreira & Luís P. Ferreira & Nuno O. Fernandes & Francisco J. G. Silva & Ana L. Ramos & Paulo Ávila, 2023. "A Simulation Study of Aircraft Boarding Strategies," Mathematics, MDPI, vol. 11(20), pages 1-13, October.
    2. Haque, Md Tabish & Hamid, Faiz, 2022. "An optimization model to assign seats in long distance trains to minimize SARS-CoV-2 diffusion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 104-120.
    3. Mutascu, Mihai & Sokic, Alexandre, 2023. "Air transportation under COVID-19 pandemic restrictions: A wavelet analysis," Transport Policy, Elsevier, vol. 139(C), pages 155-181.
    4. Sun, Xiaoqian & Wandelt, Sebastian & Zheng, Changhong & Zhang, Anming, 2021. "COVID-19 pandemic and air transportation: Successfully navigating the paper hurricane," Journal of Air Transport Management, Elsevier, vol. 94(C).
    5. Paul Schwarzbach & Julia Engelbrecht & Albrecht Michler & Michael Schultz & Oliver Michler, 2020. "Evaluation of Technology-Supported Distance Measuring to Ensure Safe Aircraft Boarding during COVID-19 Pandemic," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    6. Haque, Md Tabish & Hamid, Faiz, 2023. "Social distancing and revenue management—A post-pandemic adaptation for railways," Omega, Elsevier, vol. 114(C).
    7. Schultz, Michael & Soolaki, Majid & Salari, Mostafa & Bakhshian, Elnaz, 2023. "A combined optimization–simulation approach for modified outside-in boarding under COVID-19 regulations including limited baggage compartment capacities," Journal of Air Transport Management, Elsevier, vol. 106(C).
    8. Schultz, Michael & Evler, Jan & Asadi, Ehsan & Preis, Henning & Fricke, Hartmut & Wu, Cheng-Lung, 2020. "Future aircraft turnaround operations considering post-pandemic requirements," Journal of Air Transport Management, Elsevier, vol. 89(C).
    9. R John Milne & Liviu-Adrian Cotfas & Camelia Delcea & Liliana Crăciun & Anca-Gabriela Molănescu, 2020. "Adapting the reverse pyramid airplane boarding method for social distancing in times of COVID-19," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salari, Mostafa & Milne, R. John & Delcea, Camelia & Kattan, Lina & Cotfas, Liviu-Adrian, 2020. "Social distancing in airplane seat assignments," Journal of Air Transport Management, Elsevier, vol. 89(C).
    2. Ren, Xinhui & Xu, Xiaobing, 2018. "Experimental analyses of airplane boarding based on interference classification," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 55-63.
    3. Michael Schultz & Michael Schmidt, 2018. "Advancements in Passenger Processes at Airports from Aircraft Perspective," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    4. Ren, Xinhui & Zhou, Xiyu & Xu, Xiaobing, 2020. "A new model of luggage storage time while boarding an airplane: An experimental test," Journal of Air Transport Management, Elsevier, vol. 84(C).
    5. Zeineddine, Hassan, 2021. "Reducing the effect of passengers’ non-compliance with aircraft boarding rules," Journal of Air Transport Management, Elsevier, vol. 92(C).
    6. Tang, Tie-Qiao & Yang, Shao-Peng & Ou, Hui & Chen, Liang & Huang, Hai-Jun, 2018. "An aircraft boarding model accounting for group behavior," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 182-189.
    7. Camelia Delcea & Liviu-Adrian Cotfas & Liliana Crăciun & Anca Gabriela Molanescu, 2018. "Are Seat and Aisle Interferences Affecting the Overall Airplane Boarding Time? An Agent-Based Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    8. Schultz, Michael & Evler, Jan & Asadi, Ehsan & Preis, Henning & Fricke, Hartmut & Wu, Cheng-Lung, 2020. "Future aircraft turnaround operations considering post-pandemic requirements," Journal of Air Transport Management, Elsevier, vol. 89(C).
    9. Camelia Delcea & Liviu-Adrian Cotfas & Nora Chiriță & Ionuț Nica, 2018. "A Two-Door Airplane Boarding Approach When Using Apron Buses," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    10. Camelia Delcea & Liviu-Adrian Cotfas & Mostafa Salari & R. John Milne, 2018. "Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
    11. Schultz, Michael & Soolaki, Majid & Salari, Mostafa & Bakhshian, Elnaz, 2023. "A combined optimization–simulation approach for modified outside-in boarding under COVID-19 regulations including limited baggage compartment capacities," Journal of Air Transport Management, Elsevier, vol. 106(C).
    12. Milne, R. John & Delcea, Camelia & Cotfas, Liviu-Adrian & Salari, Mostafa, 2019. "New methods for two-door airplane boarding using apron buses," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    13. Wittmann, Jürgen, 2019. "Customer-oriented optimization of the airplane boarding process," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 31-39.
    14. Camelia Delcea & Liviu-Adrian Cotfas & Ramona Paun, 2018. "Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    15. Zeineddine, Hassan, 2017. "A dynamically optimized aircraft boarding strategy," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 144-151.
    16. Qiang, Sheng-Jie & Jia, Bin & Jiang, Rui & Huang, Qing-Xia & Radwan, Essam & Gao, Zi-You & Wang, Yu-Qing, 2016. "Symmetrical design of strategy-pairs for enplaning and deplaning an airplane," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 52-60.
    17. Hutter, Leonie & Jaehn, Florian & Neumann, Simone, 2019. "Influencing factors on airplane boarding times," Omega, Elsevier, vol. 87(C), pages 177-190.
    18. Picchi Scardaoni, Marco & Magnacca, Fabio & Massai, Andrea & Cipolla, Vittorio, 2021. "Aircraft turnaround time estimation in early design phases: Simulation tools development and application to the case of box-wing architecture," Journal of Air Transport Management, Elsevier, vol. 96(C).
    19. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    20. Mostafa Salari & R. John Milne & Lina Kattan, 2019. "Airplane boarding optimization considering reserved seats and passengers’ carry-on bags," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 806-823, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5329-:d:379019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.