IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4790-d1662450.html
   My bibliography  Save this article

Enhancing Mixed Traffic Stability with TD3-Driven Bilateral Control in Autonomous Vehicle Chains

Author

Listed:
  • Kan Liu

    (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Pengpeng Jiao

    (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Weiqi Hong

    (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Yue Chen

    (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

Abstract

This study presents a TD3-driven Bilateral Control Model (TD3-BCM) aimed at improving the stability of mixed traffic flows in autonomous vehicle (AV) chains. By integrating deep reinforcement learning, TD3-BCM optimizes control strategies to reduce traffic oscillations, smooth speed and acceleration fluctuations, and enhance overall system performance. Stability analysis shows that TD3-BCM effectively suppresses traffic fluctuations, with system stability improving from 1.132 to 1.182 as AV penetration increases. At an AV penetration rate of 40%, TD3-BCM surpasses both Cooperative Adaptive Cruise Control (CACC) and traditional Bilateral Control Model (BCM) approaches in terms of traffic efficiency, safety, and energy use—raising trailing vehicle speed by 12.6%, shortening average headway by 19.0%, increasing Time-to-Collision (TTC) by 87.3%, and lowering fuel consumption by 14.8%. When AV penetration reaches 70%, fuel savings rise to 19.7%, accompanied by further improvements in both traffic stability and safety. TD3-BCM provides a scalable and sustainable solution for intelligent transportation systems, particularly in high-penetration AV environments, by significantly enhancing stability, operational efficiency, and road safety.

Suggested Citation

  • Kan Liu & Pengpeng Jiao & Weiqi Hong & Yue Chen, 2025. "Enhancing Mixed Traffic Stability with TD3-Driven Bilateral Control in Autonomous Vehicle Chains," Sustainability, MDPI, vol. 17(11), pages 1-30, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4790-:d:1662450
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4790/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4790/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Ruifa & Gu, Qiufan & Xu, Taorang & Hao, Huijun & Yao, Zhihong, 2022. "Analysis of linear internal stability for mixed traffic flow of connected and automated vehicles considering multiple influencing factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    2. Montanino, Marcello & Punzo, Vincenzo, 2015. "Trajectory data reconstruction and simulation-based validation against macroscopic traffic patterns," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 82-106.
    3. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    4. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    5. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Yulu & Yang, Yuwei & Wang, Zhiyuan & Luo, YinJie, 2022. "Exploring the impact of damping on Connected and Autonomous Vehicle platoon safety with CACC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.
    3. Li, Xin & Wang, Tianqi & Xu, Weihan & Li, Huaiyue & Yuan, Yun, 2024. "Modelling connected and autonomous bus on dynamics of mixed traffic in partially connected and automated traffic environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    4. Chen Wang & Yulu Dai & Jingxin Xia, 2020. "A CAV Platoon Control Method for Isolated Intersections: Guaranteed Feasible Multi-Objective Approach with Priority," Energies, MDPI, vol. 13(3), pages 1-16, February.
    5. Zhou, Zhi & Li, Linheng & Qu, Xu & Ran, Bin, 2024. "A self-adaptive IDM car-following strategy considering asymptotic stability and damping characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    6. Hongxin Yu & Lihui Zhang & Meng Zhang & Fengyue Jin & Yibing Wang, 2024. "Coordinated Ramp Metering Considering the Dynamics of Mixed-Autonomy Traffic," Sustainability, MDPI, vol. 16(22), pages 1-26, November.
    7. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    8. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    9. Lixiang Zhang & Yan Yan & Yaoguang Hu, 2024. "Deep reinforcement learning for dynamic scheduling of energy-efficient automated guided vehicles," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3875-3888, December.
    10. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    11. Benjamin Heinbach & Peter Burggräf & Johannes Wagner, 2024. "gym-flp: A Python Package for Training Reinforcement Learning Algorithms on Facility Layout Problems," SN Operations Research Forum, Springer, vol. 5(1), pages 1-26, March.
    12. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
    13. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    14. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    15. Jiang, Jiwan & Zhou, Yang & Wang, Xin & Ahn, Soyoung, 2024. "On dynamic fundamental diagrams: Implications for automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    16. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    17. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    18. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    19. Zhou, Zhipeng & Zhuo, Wen & Cui, Jianqiang & Luan, Haiying & Chen, Yudi & Lin, Dong, 2025. "Developing a deep reinforcement learning model for safety risk prediction at subway construction sites," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    20. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4790-:d:1662450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.