IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2024i1p241-d1558092.html
   My bibliography  Save this article

The Impact of Building and Green Space Combination on Urban Thermal Environment Based on Three-Dimensional Landscape Index

Author

Listed:
  • Ying Wang

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yin Ren

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Xiaoman Zheng

    (School of Information Engineering, Sanming University, Sanming 365004, China)

  • Zhifeng Wu

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

Abstract

Urbanization transforms landscapes from natural ecosystems to configurations of impervious surfaces and green spaces, leading to urban heat island effects that impact health and ecosystem sustainability. This study in Xiamen City, China, categorizes urban areas into functional zones, employs Random Forest and Stepwise Regression models to assess thermal differences, and proposes optimization measures for the building–green space landscape. The optimization involves altering the characterization of the building–green space landscape pattern. Results indicate: (1) due to the spatial heterogeneity of the building–green space landscape pattern in different functional zones, the surface temperature also shows strong spatial heterogeneity in different functional zones; (2) different optimization measures for the building–green space pattern are needed for different functional zones; taking the urban residential zone as an example, the Normalized Difference Vegetation Index (NDVI) in the hot spot area can be adjusted according to the value range of the cold spot area; (3) considering the solar radiation process, Sun View Factor (S un VF) plays an important role in indicating the change in surface temperature in the commercial service area, and as S un VF increases, the surface temperature of the functional zone tends to rise. This research offers insights into urban thermal environment improvement and landscape pattern optimization.

Suggested Citation

  • Ying Wang & Yin Ren & Xiaoman Zheng & Zhifeng Wu, 2024. "The Impact of Building and Green Space Combination on Urban Thermal Environment Based on Three-Dimensional Landscape Index," Sustainability, MDPI, vol. 17(1), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:241-:d:1558092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hefeng Wang & Yishao Shi & Anbing Zhang & Yuan Cao & Haixin Liu, 2017. "Does Suburbanization Cause Ecological Deterioration? An Empirical Analysis of Shanghai, China," Sustainability, MDPI, vol. 9(1), pages 1-17, January.
    2. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    3. Arijit Das & Priyakshi Saha & Rajarshi Dasgupta & Miguel Inacio & Manob Das & Paulo Pereira, 2024. "How Do the Dynamics of Urbanization Affect the Thermal Environment? A Case from an Urban Agglomeration in Lower Gangetic Plain (India)," Sustainability, MDPI, vol. 16(3), pages 1-16, January.
    4. Cansu Güller & Süleyman Toy, 2024. "The Impacts of Urban Morphology on Urban Heat Islands in Housing Areas: The Case of Erzurum, Turkey," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanfan Zheng & Liang Chen & Haipeng Zhao, 2024. "Assessing Building Energy Savings and the Greenhouse Gas Mitigation Potential of Green Roofs in Shanghai Using a GIS-Based Approach," Sustainability, MDPI, vol. 16(18), pages 1-23, September.
    2. Francisco Estrada & Veronica Lupi & W. J. Wouter Botzen & Richard S. J. Tol, 2025. "Urban and non-urban contributions to the social cost of carbon," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Sánchez-Guevara Sánchez, Carmen & Sanz Fernández, Ana & Núñez Peiró, Miguel & Gómez Muñoz, Gloria, 2020. "Energy poverty in Madrid: Data exploitation at the city and district level," Energy Policy, Elsevier, vol. 144(C).
    4. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    5. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    6. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    7. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    8. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    9. Chris Boulton & Claudia Baldwin & Tony Matthews & Silvia Tavares, 2023. "Environmental Design for Urban Cooling, Access, and Safety: A Novel Approach to Auditing Outdoor Areas in Residential Aged Care Facilities," Land, MDPI, vol. 12(2), pages 1-22, February.
    10. Fitsum Tariku & Afshin Gharib Mombeni, 2023. "ANN-Based Method for Urban Canopy Temperature Prediction and Building Energy Simulation with Urban Heat Island Effect in Consideration," Energies, MDPI, vol. 16(14), pages 1-23, July.
    11. Yuanyuan Li & Lina Zhao & Hao Zheng & Xiaozhou Yang, 2025. "Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design," Land, MDPI, vol. 14(7), pages 1-32, July.
    12. Chi, Fang'ai & Xu, Liming & Pan, Jiajie & Wang, Ruonan & Tao, Yekang & Guo, Yuang & Peng, Changhai, 2020. "Prediction of the total day-round thermal load for residential buildings at various scales based on weather forecast data," Applied Energy, Elsevier, vol. 280(C).
    13. Jiaxi Hu & Chengxi Lyu & Yinzhen Hou & Neng Zhu & Kairui Liu, 2024. "Research on Summer Indoor Air Conditioning Design Parameters in Haikou City: A Field Study of Indoor Thermal Perception and Comfort," Sustainability, MDPI, vol. 16(9), pages 1-17, May.
    14. Néstor García-Chan & Juan A. Licea-Salazar & Luis G. Gutierrez-Ibarra, 2023. "Urban Heat Island Dynamics in an Urban–Rural Domain with Variable Porosity: Numerical Methodology and Simulation," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
    15. Yasi Tian, 2020. "Mapping Suburbs Based on Spatial Interactions and Effect Analysis on Ecological Landscape Change: A Case Study of Jiangsu Province from 1998 to 2018, Eastern China," Land, MDPI, vol. 9(5), pages 1-18, May.
    16. David B. Olawade & Melissa McLaughlin & Yinka Julianah Adeniji & Gabriel Osasumwen Egbon & Arghavan Rahimi & Stergios Boussios, 2025. "Urban Microclimates and Their Relationship with Social Isolation: A Review," IJERPH, MDPI, vol. 22(6), pages 1-32, June.
    17. Wenliang Li, 2020. "Quantifying the Building Energy Dynamics of Manhattan, New York City, Using an Urban Building Energy Model and Localized Weather Data," Energies, MDPI, vol. 13(12), pages 1-22, June.
    18. Battista, Gabriele & de Lieto Vollaro, Emanuele & Ocłoń, Paweł & Vallati, Andrea, 2021. "Effect of mutual radiative exchange between the surfaces of a street canyon on the building thermal energy demand," Energy, Elsevier, vol. 226(C).
    19. Luis Godoy-Vaca & E. Catalina Vallejo-Coral & Javier Martínez-Gómez & Marco Orozco & Geovanna Villacreses, 2021. "Predicted Medium Vote Thermal Comfort Analysis Applying Energy Simulations with Phase Change Materials for Very Hot-Humid Climates in Social Housing in Ecuador," Sustainability, MDPI, vol. 13(3), pages 1-31, January.
    20. Yi Bao & Zhou Huang & Han Wang & Ganmin Yin & Xiao Zhou & Yong Gao, 2023. "High‐resolution quantification of building stock using multi‐source remote sensing imagery and deep learning," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 350-361, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:241-:d:1558092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.