IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics0306261924008742.html
   My bibliography  Save this article

Establishment of LCZ-based urban building energy consumption dataset in hot and humid subtropical regions through a bottom-up method

Author

Listed:
  • Tian, Xiaoyu
  • Zhang, Hanwen
  • Liu, Lin
  • Huang, Jiahao
  • Liu, Liru
  • Liu, Jing

Abstract

Energy consumption has dramatically increased in buildings over the past decade. A synthetic urban building energy consumption dataset can be used to estimate energy demand and anthropogenic carbon emission, which overcomes the constraints of real-world datasets, including difficulties in the collection of energy uses from different sources, expense, and time. In this study, a 24-h building energy consumption dataset was designed and established in a hot and humid subtropical region, based on ENVI-met, Energyplus™ and Access software. The dataset considers 72 conditions from three aspects including six built-up local climate zones, seven building categories (five public and two residential buildings), and four widely-used air conditioning systems. A total of 17,400 building energy consumption data were collected. We analyzed the hourly variations of building energy consumption under different conditions, and the factors influencing the building energy consumption. Finally, based on the dataset, taking Tianhe District in Guangzhou as an example, we further explored the hourly spatio-temporal distribution patterns of building energy consumption and daily total building energy consumption distribution using ArcGIS software. This study provides a method for establishing an urban building energy consumption dataset from a local-scale view, which shows a new light on developing the National Building Energy Consumption Database response to global low-carbon action.

Suggested Citation

  • Tian, Xiaoyu & Zhang, Hanwen & Liu, Lin & Huang, Jiahao & Liu, Liru & Liu, Jing, 2024. "Establishment of LCZ-based urban building energy consumption dataset in hot and humid subtropical regions through a bottom-up method," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008742
    DOI: 10.1016/j.apenergy.2024.123491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924008742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Ruiqing & Liu, Chun-Ho & Li, Xian-Xiang & Lin, Chuan-Yao, 2023. "Effect of local climate zone (LCZ) and building category (BC) classification on the simulation of urban climate and air-conditioning load in Hong Kong," Energy, Elsevier, vol. 271(C).
    2. Zheng, Shuguang & Huang, Guohe & Zhou, Xiong & Zhu, Xiaohang, 2020. "Climate-change impacts on electricity demands at a metropolitan scale: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 261(C).
    3. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    4. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    5. Richard Heede, 2014. "Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010," Climatic Change, Springer, vol. 122(1), pages 229-241, January.
    6. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    7. Arroyo, Javier & Manna, Carlo & Spiessens, Fred & Helsen, Lieve, 2022. "Reinforced model predictive control (RL-MPC) for building energy management," Applied Energy, Elsevier, vol. 309(C).
    8. Kit Benjamin & Zhiwen Luo & Xiaoxue Wang, 2021. "Crowdsourcing Urban Air Temperature Data for Estimating Urban Heat Island and Building Heating/Cooling Load in London," Energies, MDPI, vol. 14(16), pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuelson, Holly W. & Baniassadi, Amir & Gonzalez, Pablo Izaga, 2020. "Beyond energy savings: Investigating the co-benefits of heat resilient architecture," Energy, Elsevier, vol. 204(C).
    2. Kit Benjamin & Zhiwen Luo & Xiaoxue Wang, 2021. "Crowdsourcing Urban Air Temperature Data for Estimating Urban Heat Island and Building Heating/Cooling Load in London," Energies, MDPI, vol. 14(16), pages 1-26, August.
    3. Néstor García-Chan & Juan A. Licea-Salazar & Luis G. Gutierrez-Ibarra, 2023. "Urban Heat Island Dynamics in an Urban–Rural Domain with Variable Porosity: Numerical Methodology and Simulation," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
    4. Yang, Xiaoshan & Yao, Lingye & Peng, Lilliana L.H., 2024. "Impacts of urban air temperature and humidity on building cooling and heating energy demand in 15 cities of eastern China," Energy, Elsevier, vol. 288(C).
    5. Baniassadi, Amir & Heusinger, Jannik & Gonzalez, Pablo Izaga & Weber, Stephan & Samuelson, Holly W., 2022. "Co-benefits of energy efficiency in residential buildings," Energy, Elsevier, vol. 238(PB).
    6. Peter Frumhoff & Richard Heede & Naomi Oreskes, 2015. "The climate responsibilities of industrial carbon producers," Climatic Change, Springer, vol. 132(2), pages 157-171, September.
    7. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    8. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    9. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    10. Jacob Hörisch & Jana Kollat & Steven A. Brieger, 2017. "What influences environmental entrepreneurship? A multilevel analysis of the determinants of entrepreneurs’ environmental orientation," Small Business Economics, Springer, vol. 48(1), pages 47-69, January.
    11. Ivanova, Diana & Wieland, Hanspeter, 2023. "Tracing carbon footprints to intermediate industries in the United Kingdom," Ecological Economics, Elsevier, vol. 214(C).
    12. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    13. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    14. Hörisch, Jacob & Ortas, Eduardo & Schaltegger, Stefan & Álvarez, Igor, 2015. "Environmental effects of sustainability management tools: An empirical analysis of large companies," Ecological Economics, Elsevier, vol. 120(C), pages 241-249.
    15. Haiyun, Cui & Zhixiong, Huang & Yüksel, Serhat & Dinçer, Hasan, 2021. "Analysis of the innovation strategies for green supply chain management in the energy industry using the QFD-based hybrid interval valued intuitionistic fuzzy decision approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Jacob Hileman & Ivan Kallstenius & Tiina Häyhä & Celinda Palm & Sarah Cornell, 2020. "Keystone actors do not act alone: A business ecosystem perspective on sustainability in the global clothing industry," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.
    17. Gerard Farias & Christine Farias & Isabella Krysa & Joel Harmon, 2020. "Sustainability Mindsets for Strategic Management: Lifting the Yoke of the Neo-Classical Economic Perspective," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    18. Jinpeng Liu & Hao Yang & Delin Wei & Xiaohua Song, 2021. "Time Distribution Simulation of Household Power Load Based on Travel Chains and Monte Carlo–A Study of Beijing in Summer," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    19. Tim Mulgan, 2019. "Corporate Agency and Possible Futures," Journal of Business Ethics, Springer, vol. 154(4), pages 901-916, February.
    20. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.